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ABSTRACT 
This paper presents a new physics-inspired model to represent vapor-injected compressors. The developed model was 

inspired from the polytropic nature of compression processes. The resulting model is a pressure ratio-based model 

using suction, injection, and discharge pressures to predict evaporator mass flow rate, injection mass ratio, compressor 

power, and discharge temperature. To evaluate the model’s predictive capabilities, a dataset containing 4, in-house, 

combinations of compressors with different refrigerants and 3 datasets collected from the literature were used. The 

deviation from experimental results for the evaporator mass flow rate, and input compressor power were lower than 

5% Mean Absolute Percentage Error (MAPE) in all cases of interpolation, with the exception of few extrapolation 

cases. The deviation from experimental results for the discharge temperature was lower than 3K Mean Absolute Error 

(MAE) in all cases. 

 

1. INTRODUCTION 
 

Refrigerant injection is a technique used to enhance the performance and reliability of heat pumps, particularly in 

challenging environmental conditions. This method involves redirecting a portion of the refrigerant from the condenser 

outlet back into the compressor at an intermediate stage of the compression process. By injecting vapor, the circulation 

of refrigerant in the condenser is increased, leading to higher heating capacities. Since a portion of the refrigerant is 

injected into the compressor at an intermediate pressure, less specific compression work is needed compared to a non-

injected compressor (Xu et al. 2011) 

Refrigerant injection can be performed in three ways, liquid injection, vapor injection, or two-phase injection. Yang 

et al., (2015) performed a computational investigation of three techniques to reduce the discharge temperature through 

two-phase suction, liquid injection, vapor injection, and two-phase injection. All these methods showed very 

promising results. It was concluded that two-phase/vapor injection outperforms both liquid injection and two-phase 

suction in both cooling capacity and COP by 11.8% and 4.8% respectively. It means for improving the air source heat 

pumps performance improvement, vapor injection is one of the most favorable techniques.  

A significant amount of vapor injection research concerning scroll and rotary compressors has been dedicated to 

enhancing the performance of the air source heat pumps. The main two approaches used to implement vapor injection 

are closed economized system and flash tank system. Ma and Zhao, (2008) conducted an experimental investigation 

into the vapor injection heat pump cycle, incorporating a flash tank coupled with a scroll compressor. Wang et al. 

(2009) explored the performance of a 11kW R410A heat pump system employing a two-stage vapor injected scroll 

compressor through experimental means, thereby establishing fundamental design and operational guidelines for heat 

pump systems. Concurrently, similar experimental investigations of vapor-injected compressors showed enhanced 

performance, showing the significance of economization and vapor injection, as evidenced by (Xu et al. 2011, Bertsch 

and Groll 2008, Yang et al. 2015,  Cho et al., 2012, Khan and Bradshaw 2023). Currently, research on vapor injection 

compressors is either focused on vapor injection compressor design optimization or compressor modeling. However, 

unlike conventional scroll compressors devoid of injection, conventional efficiency models like the AHRI 10-

coefficient model, are inadequate for representing the performance of injection scroll compressors due to the variable 

parameters associated with injected refrigerants. Even though accurate models are very important for prediction of 

compressor performance, efficiency, and operational capabilities. Accurate compressor models can improve the 

performance of overall system by assessing energy consumption under varying conditions accurately. Furthermore, 
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the unavailability of common modeling approach for vapor injected compressors makes it complicated for its 

integration in heat pump systems.  

Previously, in literature, there have been attempts to develop physics-based models i.e., mechanistic chamber model, 

which provides deep understanding of the detailed geometrical and thermodynamic phenomena within the compressor 

capturing compressor performance more accurately (Bradshaw et al. 2016; Orosz et al. 2014; Islam et al. 2021, 

Tanveer et al. 2022; Tanveer and Bradshaw 2021). These models are generally very detailed and very specific for 

compressor design purposes, providing high fidelity representation of compressor behavior but at the cost of high 

computational time. However, at system level, the focus shifts towards the performance prediction and system 

integration. Consequently, researchers have extensively explored semi-empirical or black box models tailored for 

vapor injection compressors (Tello-Oquendo et al., 2017, Lumpkin et al., 2019, Winandy et al., 2002, Dardenne et al. 

2015). 

The black-box model is one of the modelling approaches, which does not rely on specific physical information 

regarding compression and injection processes within the compressor. Instead, these models typically comprise 

polynomial equations, where the coefficients are adjusted to match experimental data.  Tello-Oquendo et al., (2017b), 

modified the AHRI polynomial model for compressors with vapor injection by estimating the suction mass flow rate 

through the existing AHRI polynomial model. They established the ratio of injection mass flow rate to suction mass 

flow rate via a linear correlation dependent on the ratio of injection to suction pressure. Furthermore, they incorporate 

a modified version of the AHRI polynomial model, augmented with an additional linear term to consider the injection 

dew point temperature, to predict power consumption. Additionally, the authors derive the injection pressure based on 

the energy balance and heat transfer principles associated with the specific vapor injection mechanism utilized in the 

cycle, such as the economizer or flash tank. Lumpkin et al., (2018b) developed a dimensionless-PI correlation for 

mapping injection ratio and compressor power consumption. Navarro et al., (2013) developed black-box model which 

only captured the injection mass flow rate. The correlation for injection mass flow rate was a first-order polynomial 

function of evaporating mass flow rate (𝑚̇𝑒) and injection to evaporator pressure ratio (𝑃𝑖𝑛𝑗 𝑃𝑒⁄ ). Khan and Bradshaw 

(2024b) proposed vapor injected mapping characterization to predict compressor power, evaporator mass flow rate, 

injection mass flow rate as output parameters. All these output parameters are the function of evaporator pressure (𝑃𝑒), 

injection pressure (𝑃𝑖𝑛𝑗  ), and condensing pressure (𝑃𝑐𝑜𝑛𝑑) . All these black box models have either 10 or more 

coefficients, require 10 or more data points to train the model for performance prediction. 

The semi-empirical models are derived from fundamental work equations of the vapor compression process and 

employ less experimental data to predict the compressor performance with higher accuracy. Dardenne et al. 

incorporated modifications to Winandy and Lebrun model to accommodate the complexities associated with vapor 

injection (Winandy et al., 2002, Dardenne et al. 2015). These enhancements necessitated the incorporation of added 

parameters to address the influence of vapor injection on key compressor performance outputs, encompassing suction 

mass flow rate, injection mass flow rate, input power consumption, and discharge temperature. The resultant model 

integrates ten parameters, each possessing tangible physical significance, and practiced validation against a 

comprehensive dataset comprising 63 steady-state experimental measurements. Sun et al., (2018) developed 

correlations for compressor output parameters to enable accurate and computationally efficient predictions. These 

correlations require empirical parameters, with the suction mass flow rate model needing five, injection mass flow 

rate model needing eight, compressor input power model needing twelve, and discharge enthalpy model needing one. 

Tello-Oquendo et al., (2019) developed semi-empirical model to account for the main sources of losses in the 

compression process. This model had 10 empirical parameters to predict compressor and volumetric efficiencies, 

discharge temperature, compressor power, and mass flow rate through suction and injection ports. This model was 

validated with non-injected scroll compressor tested with R290 and a scroll compressor with vapor injection tested 

with R207C. Similar studies were carried out developing semi-empirical compressor models, which studied the added 

complexities of vapor injection in the compressor in detail by (Qiao et al., 2015, Dechesne et al. 2019) 

In this paper, a physics-inspired modeling methodology is proposed for predicting the performance of vapor injected 

compressors. In particular, the study will focus on the development of model for each compressor output parameter 

including compressor power consumption, discharge temperature, and evaporator mass flow rate. The model will also 

be capable of predicting the performance for fixed and variable speed compressors with or without vapor injection. In 

literature, most models for variable speed compressor performance prediction require 10 or more experimental data 
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points to tune the model’s coefficients. In this study, a model is developed which does not require extensive 

experimental testing and also requires computational time similar to black-box models.  

2. EXPERIMENTAL DATA COLLECTION AND COMPILATION 
Experimental data is compiled from 7 vapor injected compressors of 2 technology types (rotary and scroll), using 3 

refrigerants for a total of 216 steady state data points to be used for model training and evaluation. The majority of 

this data is collected by the authors (116 data points), with supplemental data collected from the literature.  

2.1 Experimental Data Collection – In House Data 
For the in-house data collection, the hot-gas bypass load stand has been used for collection of data on two scroll and 

rotary compressors with refrigerants, R410A and R454B. The load stand is capable of testing both traditional and 

economized compressors at saturated suction temperature as low as -34.44 ℃ (-30 ℉) and saturated discharge 

temperature as high as 60 ℃ (140 ℉). The design capacity for the load stand is 1-5 tons (3.52-17.5 kW) compressor 

capacity. Complete operational details and uncertainty of the load stand is presented in (Khan and Bradshaw 2024a). 

Performance data for two compressor technologies, scroll and rotary, are collected with two working fluids, R410A 

and R454B with a total of 116 data points. The compressors are commercially available hermetic compressors 

originally designed for operation with R410A. The scroll compressor has a rated capacity of 5 tons and the rotary 3.25 

tons. The complete test matrix was developed based on one factor at a time design of experiments method. The final 

test matrix collected data at evaporating temperatures ranging from -34.44 ℃ to 10 ℃ (-30 °F to 50 °F), condensing 

temperatures ranging from 23.8 ℃ to 54.44 ℃ (75 °F to 130 °F), superheat from 2.8 ℃ to 16.7 ℃ (5 °F to 30 °F), 

and speeds from 1800 rpm to 6000 rpm.  

Supplemental experimental data was also collected from literature including data for a scroll compressor from 

Dardenne et al. (2015), Lumpkin et al., (2018), and Tello-Oquendo et al. (2017b), tested with R407C as shown in 

Table 1. A summary of the data sets for the analysis of the models with compressor type, refrigerant, number of data 

points, and collection standard is shown in Table 1. The full data set is then divided into two subsets for each model 

performance evaluation, training and testing data set.  

Table 1: Compiled experimental data sets 

Compressor Type Capacity Refrigerant Data Points Collection Standard 

Rotary (In-House) 3.25 tons R410A 29 ASHRAE 23.1 

Rotary (In-House) 3.25 tons R454B 29 ASHRAE 23.1 

Scroll (In-House) 05 tons R410A 29 ASHRAE 23.1 

Scroll (In-House) 05 tons R454B 29 ASHRAE 23.1 

Scroll (Tello-Oqu. et al., 2017b) 4.74 tons R407C 16 ISO 

Scroll (Lumpkin et al., 2018b) - R407C 21 ASHRAE 23.1 

Scroll (Dardenne et al. 2015)  03 tons R407C 63 ASHRAE 23.1 

 

2.2 Training and Testing Data Sets 
Each full data set collected is somewhat unique in its operating envelope and parameters varied, therefore the number 

of splits (training and testing data sets) is unique. For example, the data from Tello-Oquendo et al., (2017b) had total 

of 16 datapoints for scroll compressor and did not include variable speed and variable superheat, while data from 

Dardenne et al., (2015b) had total of 63 datapoints for scroll compressor and did not include variable superheat. Hence, 

there are only two splits shown in Figure 1, which represent the training set and testing set for both cases of 

interpolation and extrapolation. For interpolation scenario, training data set are the exterior envelope points with 

respect to overall envelope as shown in Figure 1 (left), within the complete data set. In addition to the data points at 

the exterior envelope, two variable speed points and two variable superheat points are added into the training data set. 

The reason for these additional points is to ensure a model has seen points at different speeds and superheats before 

exposing it to the variable speed or variable superheat testing data points. These additional points are selected such 

that one point is above nominal speed and superheat, while the other point is at conditions below nominal speed and 

superheat. For instance, the rotary compressor R410A in-house data set, the compressor was tested at 30, 50, 70, 80, 

90, and 100 Hz. The nominal speed was 80 Hz, the points included in the training data sets were 30 Hz and 100 Hz. 

https://www.sciencedirect.com/science/article/pii/S0140700722004418#tbl6
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In case of extrapolation, central envelope points shown in Figure 1 (right), are taken as training data points while the 

exterior envelope points are taken as testing data points. 

 
Figure 1: Points selection for interpolation (left) and extrapolation (right) 

3. DEVELOPMENT OF PHYSICS INSPIRED MODEL 
The proposed compressor performance model consists of 3 sub-models: mass flow rate models, compressor power 

consumption, and discharge temperature. The flow rate model is on the concept of volumetric efficiency and can be 

used to evaluate volumetric flow rate and then evaporator mass flow rate. The input power model and discharge 

temperature are inspired from polytropic process with the additional terms for injection parameters and variable speed. 

The modeling approach in this work requires several inputs describing the operational conditions of the compressor, 

including: 

• Evaporating or compressor suction pressure, 𝑃𝑒𝑣𝑎𝑝 

• Injection pressure, 𝑃𝑖𝑛𝑗 

• Condensing or compressor discharge pressure, 𝑃𝑑𝑖𝑠 

• Nominal discharge temperature, 𝑃𝑑𝑖𝑠,𝑛𝑜𝑚 

• Compressor rotational speed, 𝜔 

• Compressor suction temperature, 𝑇𝑠𝑢𝑐 

 

3.1 Development of Mass Flow Rate Model 
The approach proposed to develop model for mass flow rate is based on drawing mass flow rate to compressor suction 

and injection port. Compression chamber is a fixed volume based on the compression chamber design represented as 

displacement volume, but the mass flow rate varies based on compressor speed. During compressor operation, the 

theoretical volumetric flow rate is the product of displacement volume and compressor rotational speed.  

𝑉̇𝑡ℎ = 𝑉𝑑𝑖𝑠 ∗ 𝜔                                                                                                      (1)  

During the refrigerant drawing process, theoretically the compression chamber would fill with refrigerant but 

practically heat transfer, pressure drops, and leakage may prevent the compressor from operating at its theoretical flow 

rate. To measure this deviation of the actual volumetric flow rate from theoretical can be characterized by volumetric 

efficiency. Volumetric efficiency, 𝜂𝑣, is the actual volumetric flow rate of refrigerant drawn to compressor to the 

theoretical volume of the chamber, 

 𝜂𝑣 =  
𝑉̇𝑎𝑐𝑡

𝑉̇𝑡ℎ
⁄  ,                                                                                                    (2) 

combining equation 1 and 2, effective displacement of the compressor can be written as, 
𝑉̇𝑎𝑐𝑡

𝜔
= 𝜂𝑣 ∗ 𝑉𝑑𝑖𝑠 ,                                                                                                     (3) 

since the volumetric efficiency is unlikely to remain constant, it will be dependent on the operating condition of the 

compressor, a generic equation is proposed to account for this variation, 
𝑉̇𝑎𝑐𝑡

𝜔
= 𝑎0 + 𝑎1 (

𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
),                                                                                              (4) 

where 𝑎0 and 𝑎1 are empirical parameters determined from the experimental data. 
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To determine the evaporator volumetric flow rate for vapor injected compressors, equation 4 is modified to include 

extra empirical parameter for compressor speed variation and injection pressure to suction pressure ratio to account 

for injection condition. The proposed correlation for evaporator volumetric flow rate, 

𝑉̇𝑒𝑣𝑎𝑝 = 𝑎0 + 𝑎1 ∗ 𝜔 + 𝑎2 ∗ (
𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

𝑎3

+ 𝑎4 ∗ (
𝑃𝑖𝑛𝑗

𝑃𝑒𝑣𝑎𝑝
)

𝑎3

,                                                        (5) 

where coefficients 𝑎0 to 𝑎4 are empirical parameters and can be determined from experimental data. Exponent 𝑎3 is 

added into equation to better fit the experimental data. Now evaporator mass flow rate can be found by density equation 

shown below, 

𝑚̇𝑒𝑣𝑎𝑝 =  𝜌𝑠𝑢𝑐 ∗ 𝑉̇𝑒𝑣𝑎𝑝 ,                                                                                            (6) 

To calculate injection mass flow rate, injection mass ratio model from Tello-Oquendo et al. (2017b), is modified to 

incorporate compressor rotational speed to account for variable speed compressors, 
𝑚̇𝑖𝑛𝑗

𝑚̇𝑒𝑣𝑎𝑝
= 𝑏0 + 𝑏1 ∗ (

𝑃𝑖𝑛𝑗

𝑃𝑒𝑣𝑎𝑝
) + 𝑏2 ∗ (

𝜔𝑎𝑐𝑡

𝜔𝑛𝑜𝑚
),                                                                                (7) 

in equation 7, the actual compressor speed is normalized by nominal compressor speed. Nominal condition means 

design condition speed for a specific compressor. The actual compressor speed is also normalized by the minimum 

and maximum compressor speed in the data set for better understanding, upon evaluation, it also predicted almost 

similar results for injection mass flow rate. To calculate the total mass flow rate, 𝑚̇𝑐𝑜𝑛𝑑, at the compressor discharge, 

mass balance is applied on evaporator and injection mass flow rate, 

𝑚̇𝑐𝑜𝑛𝑑 =  𝑚̇𝑒𝑣𝑎𝑝 + 𝑚̇𝑖𝑛𝑗 ,                                                                                                  (8) 

 

3.2 Development of Compressor Power Model 
The polytropic compression process for reversible rate of work is given by, 

 𝑊̇𝑐𝑜𝑚𝑝 =
𝑛

𝑛−1
∗ 𝑚̇𝑠 ∗ 𝑝𝑠 ∗ 𝑣𝑠 [(

𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

(𝑛−1)

𝑛
− 1],                                                                                  (9) 

where 𝑛 is the polytropic index of the process, which characterizes the type of the thermodynamic process that an 

ideal gas is undergoing: 

• 𝑛 =  0: an isobaric process 

• 𝑛 =  1: an isothermal compression process 

• 𝑛 =  𝛾 =  𝑐𝑝 𝑐𝑣⁄ : an isentropic process 

• 𝑛 =  ∞: an isochoric process 

Equation 9 shows the minimum power to compress gas following a polytropic process, it can be generalized to make 

a dimensionless power correlation. Since equation 9, represents ideal compression work, which in practical 

applications is higher because of mechanical friction, motor inefficiencies, and other thermodynamic losses. Also, 

many gases do not behave ideally under high pressure conditions, that’s why equation 9 should be generalized to fit it 

to actual compression process. 

𝑊̇𝑐𝑜𝑚𝑝 = 𝑐1 [(
𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

𝑐2

− 1],                                                                                  (10) 

To further modify equation 10 for vapor injection compressors, compressor speed, coefficient for biases, injection 

pressure to suction pressure ratio, and normalized discharge pressure ratio is added. Compressor speed term is added 

to account for variable speed compressors. 𝑐0  is added an additional coefficient to account for biases. Injection 

pressure to suction pressure ratio is added as a representative of injection conditions. In practical applications, 

compressor power consumption is more effected by the variation of discharge pressure, therefore normalized 

discharge pressure term is included,  

𝑊̇𝑐𝑜𝑚𝑝 = 𝑐0 + 𝑐1 ∗ 𝜔 + 𝑐2 ∗ (
𝑃𝑑𝑖𝑠

𝑃𝑠𝑢𝑐
)𝑐3 +  𝑐4 ∗ (

𝑃𝑖𝑛𝑗

𝑃𝑠𝑢𝑐
)𝑐3 +  𝑐5 ∗ (

𝑃𝑑𝑖𝑠

𝑃𝑑𝑖𝑠, 𝑛𝑜𝑚
)𝑐3 ,                                (11) 

where 𝑐0 to 𝑐5 are the empirical parameters to be fitted based on experimental data. 𝑐3 exponent is included to account 

for polytropic index to simulate actual polytropic compression process. In normalized discharge pressure term, 

𝑃𝑑𝑖𝑠, 𝑛𝑜𝑚 stands for design discharge pressure to normalize the discharge pressure for the analysis. If in case, design 

discharge pressure is unknown or ambiguous, then in that case any pressure from minimum to maximum in data set 

can be used as 𝑃𝑑𝑖𝑠, 𝑛𝑜𝑚. It has been evaluated and the results were almost similar for taking any discharge pressure 

for normalizing.  
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3.3 Development of Compressor Discharge Temperature 
The discharge temperature correlation is a relation between temperatures and pressures for polytropic compression 

process can be written as, 

𝑇𝑑𝑖𝑠

𝑇𝑠𝑢𝑐
= (

𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

𝑛−1
𝑛⁄

,                                                                                                          (12) 

To generalize this equation to fit to experimental data, it can be written as, 

𝑇𝑑𝑖𝑠 = 𝑇𝑠𝑢𝑐 ∗ (
𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

𝑑1

,                                                                                                          (13) 

where 𝑑1 is empirical parameter to fit to experimental data.  

To further modify equation 13 for vapor injection compressors, compressor speed, coefficient for biases, and injection 

pressure to suction pressure ratio is added. Compressor speed term is added to account for variable speed compressors. 

𝑑0 is added an additional coefficient to account for biases. Injection pressure to suction pressure ratio is added as a 

representative of injection conditions. 

𝑇𝑑𝑖𝑠 = 𝑑0 + 𝑑1 ∗ 𝜔 + 𝑇𝑠𝑢𝑐 ∗ [𝑑2 ∗ (
𝑃𝑑𝑖𝑠

𝑃𝑒𝑣𝑎𝑝
)

𝑑3

+  𝑑4 ∗ (
𝑃𝑖𝑛𝑗

𝑃𝑒𝑣𝑎𝑝
)

𝑑3

],                                                 (14) 

where 𝑑0  to 𝑑4  are the empirical parameters to be fitted based on experimental data. 𝑑3  exponent is included to 

account for polytropic index to simulate actual polytropic compression process. 

3.4 Error Metric to Evaluate Model Performance 
The proposed model is trained then evaluated for its ability to predict compressor power, evaporator mass flow rate 

and discharge temperature. The model is initially trained with full data and then trained with 10 data points from each 

dataset for multiple compressor technologies and different refrigerants. Following the training phase, the performance 

of the trained model is evaluated by comparing its predictions against the corresponding test data obtained from 

experiments as described in Sections 2. The evaluation of model performance is quantified using the Mean Absolute 

Percentage Error (MAPE), which serves as a metric to measure the accuracy and effectiveness of the models in 

predicting the desired outcomes, 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑌𝑡𝑟𝑢𝑒,𝑖−𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖

𝑌𝑡𝑟𝑢𝑒,𝑖
|𝑛

𝑖=1 ,                                                         (15) 

where 𝑛  is the total number of data points in the data set, 𝑖  is each data point, 𝑌𝑡𝑟𝑢𝑒,𝑖  and 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖  are the model 

measured data value and model predicted data value for any performance parameter. The MAPE is calculated for both 

compressor power and evaporator mass flow rate.  

The Mean Absolute Error (MAE) is a metric used to evaluate accuracy.  It measures the average absolute difference 

between the actual and predicted values. In this paper, MAE is used to calculate the error difference of temperature in 

Kelvin. The formula for calculating the Mean Absolute Error is: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1 ,                                                             (16) 

Where 𝑛 stands for number of samples, 𝑦𝑖  stands for the actual value of target variable, 𝑦̂𝑖 stands for the predicted 

value of target variable. MAE is used to calculate the absolute differences between the actual and predicted values 

across all samples in the dataset specifically used for temperature. 

 

4. RESULTS AND DISCUSSION 
In the current study, a physics inspired model was developed and implemented in python. Thermodynamic properties 

of the fluid i.e., density, were evaluated in CoolProp. The parameters of the models are determined through the 

minimization of respective objective functions, which encapsulate the sum of squared errors between observed and 

predicted values, for variables such as compressor power, evaporator mass flow rate and discharge temperature. This 

minimization process is executed utilizing a nonlinear curve fitting algorithm provided by the SciPy library, 

facilitating the optimization of model parameters to best fit the experimental data. 

The parameters of the compressor power and discharge temperature model are obtained by the curve fitting algorithm. 

As shown in Figure 2, parity plot is drawn between experimentally measured and model predicted values for both 

compressor power and discharge temperature. As depicted from the Figure, the MAPE values predicted by the 

proposed model are less than 2% showing model’s capability. It can be clearly seen, almost all of the points are along 

a straight line, which highlights the reliability of the proposed model in prediction of compressor power and 

compressor discharge temperature. It should be noted that compressor power showed significant dependency on the 

discharge pressure in performance evaluation. The inclusion of compressor discharge pressure significantly reduced 

the MAPE values for the model.  
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Figure 2: Physics Inspired Model Results for Compressor Power (left) and Discharge Temperature (right) 

MAPE for power model predicted parameter is summarized in Table 3. The MAPE values are evaluated in 3 cases of 

training the model: full data interpolation, 10 data points interpolation, and 10 data points extrapolation. It can be seen 

that all the data sets when trained with full data showed less than 2% MAPE for compressor power with the exception 

of scroll compressor R454B data. The compressor power model is then trained with 10 data points for each data set 

in case of interpolation shown in Figure 1, the MAPE for interpolation with 10 data points was less than 2% except 

for the case of R454B data with scroll and rotary compressor.  Extrapolation analysis is also carried out for all the data 

sets training the model with 10 exterior envelope points as shown in Figure 1. The results for extrapolation in table 3 

are less than 3% MAPE for most of the cases except R454B data for scroll and rotary compressors. 

Table 2: Summary of Physics inspired model for Compressor Power. 

 

The Mean Absolute Error (MAE) for the discharge temperature model's predicted results are summarized in Table 3. 

Three distinct scenarios are considered for model training: full data interpolation, interpolation with 10 data points, 

and extrapolation with 10 data points. Notably, when trained with complete datasets, all models exhibit MAE values 

for discharge temperature below 2 K, except for the Dardenne dataset. Subsequently, the discharge temperature model 

is trained with 10 data points for each dataset in the interpolation scenario, yielding MAE values below 2 K, with the 

exception of the Dardenne dataset. Moreover, extrapolation analysis employing 10 exterior envelope points reveals 

MAE values below 3 K for all datasets, as depicted in Table 3. 
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Table 3: Summary of Physics Inspired model results for compressor discharge temperature 

 

Figure 3 illustrates a parity plot comparing experimentally measured and model-predicted values for evaporator mass 

flow rate. The proposed model demonstrates MAPE values below 2%, indicating its robustness. Notably, the majority 

of data points align closely with a straight line, affirming the reliability of the model in predicting evaporator mass 

flow rate. It is noteworthy that evaporator mass flow rate exhibits considerable sensitivity to the injection to suction 

pressure ratio during performance assessment. Additionally, the injection mass flow rate is contingent upon the 

evaporator mass flow rate, as evidenced by equation 7. Therefore, improved accuracy in predicting the evaporator 

mass flow rate leads to enhanced performance in predicting the injection-to-evaporator mass ratio and, consequently, 

the injection mass flow rate. 

 
Figure 3: Physics inspired model results for evaporator mass flow rate  

Table 4 presents the Mean Absolute Percentage Error (MAPE) for the evaporator mass flow rate model's predictions. 

Three training scenarios are investigated: full data interpolation, interpolation with 10 data points, and extrapolation 

with 10 data points. Remarkably, under complete data set training, all data sets demonstrate MAPE values for 

evaporator mass flow rate below 2%. Subsequently, the evaporator model is trained using 10 data points for each 

dataset in the interpolation scenario, resulting in MAPE values below 2%. Additionally, extrapolation analysis utilizing 

10 exterior envelope points as the training dataset reveals MAPE values below 3% for all datasets, except for scroll 

compressor R410A and R454B data, as described in Table 4. 

5. CONCLUSION 
In this study a physics inspired model is presented for vapor injected compressors. The model was developed for the 

main output parameters of vapor injected compressors i.e., compressor input power, discharge temperature, evaporator 

mass flow rate, and injection mass flow rate. The models have been applied to seven data sets out of which 4 were in-

house data for rotary and scroll compressors with refrigerants R410A and R454B and 3 data sets were collected from 

the literature. The data contained ranges of pressure ratios, suction superheat, and variable speed. 

The parity plots demonstrate the model efficacy in predicting compressor power and discharge temperature, with 

MAPE values consistently below 2%. Notably, the inclusion of compressor discharge pressure in the evaluation for 

compressor power prediction significantly improved model performance.  
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Table 4: Summary of Physics inspired model for evaporator mass flow rate. 

 
The robustness of the proposed model in predicting evaporator mass flow rate, with MAPE values consistently below 

2% and a high degree of alignment between experimental and predicted values is shown. Furthermore, the summarized 

results provide additional insight into the model performance across various training scenarios i.e., interpolation and 

extrapolation, reaffirming its reliability in predicting evaporator mass flow rate. Overall, the findings suggest that the 

developed physics-inspired model holds promise for accurate and reliable predictions of key parameters in vapor 

injected compressors, thus contributing to advancements in system design and optimization. 

 

NOMENCLATURE 
𝑚̇𝑖𝑛𝑗           Mass flow rate through the injection line             [kg/s] 

𝑚𝑒𝑣𝑎𝑝
.  Mass flow rate through evaporator [kg/s] 

𝑝𝑐𝑜𝑛𝑑 Condensing pressure [kPa] 

𝑝𝑖𝑛𝑡                                                      Injection pressure       [kPa] 

𝑝𝑒𝑣𝑎𝑝 Evaporating pressure [kPa] 

𝑝𝑑𝑖𝑠 Discharge pressure  [kPa] 

𝑇𝑑𝑖𝑠                                               Discharge temperature [℃] 

𝑇𝑠𝑢𝑐                                               Suction temperature [℃] 

𝑊̇𝑐𝑜𝑚𝑝 Compressor power [kW] 

Abbreviations 

AHRI         Air-Conditioning, Heating, and Refrigeration 

Institute 

 

MAPE          Mean Absolute Percentage Error  

MAE Mean Absolute Error  

   

Greek Symbols 

⍵ Compressor speed [rpm] 
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