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ABSTRACT

A thermal compressor uses thermal energy to increase the pressure of the working gas, while maintaining a
temperature difference, as an essential factor for its effective functioning. BoostHEAT's innovative thermal
compressor, driven by eco-friendly thermal energy, not only targets the replacement of traditional compressors in
various CO, applications, but also aligns with the critical environmental motive to address global warming. The
design of the targeted thermal compressor is inspired by the gamma type Stirling engine, replacing the power piston
with inlet and outlet valves. In this paper, the thermal compressor (treated as a black box) is implemented in a heat
pump cycle, on which the tests were conducted. In the context of thermodynamic analysis, six principal inputs are
imposed to the compressor, and five outputs are measured. These physical variables are crucial in characterizing the
compressor, and evaluating its perfromance. An empirical model is developed where each output is represented as a
function of these inputs in a general mathematical form. The objective is to fine-tune these functions using machine
learning regression methods, based on the collected data. A sensitivity analysis is carried on each output with respect
to the inputs, in order to investigate the correlations between them and find the relevant inputs for each selected
output.

1. INTRODUCTION

Heating systems are major contributors to the overall energy consumption and greenhouse gases. So, reducing these
two factors would necessarily need more environmentally friendly heating systems. Among them are the heat-driven
heat pump cycles, where heating methods are combined with heat pump cycles. Some examples include non-
integrated systems that involve the coupling of a Stirling engine with a traditional electric compressor, and
integrated ones such as the Vuilleumier machines introduced by Bush (1939) patent, that operates on the principles
of a Stirling engine, absorbing heat to produce cooling and heating through compression and expansion processes.
An application is a Stirling type thermal compressor introduced by Ibsaine et al. (2016), which is a thermally driven
compressor that aim to replace a traditional compressor in a heat pump cycle. Another environmental advantage of
this technology was the use of CO; as the refrigerant, which have a relatively low global warming potential and 0
ozone depletion, along with its non-toxic and non-flammable characteristics.

A thermal compressor is a gamma type Stirling engine having the power piston replaced with inlet and outlet valves.
Therefore, the main components are two working spaces (compression (C) and expansion (E)) that are connected
with heat exchangers, heater (H), cooler (K) and regenerator (R). The heat is received through the heater and
rejected through the cooler. Both heat exchangers are separated with a porous medium regenerator that acts as a
thermal capacitor to ensure a temperature difference between lower and upper parts. A displacer separating the two
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working spaces is coupled to an electric motor with a crank mechanism and used to transport the fluid inside the
thermal compressor between lower cold and top hot parts. In few words, a thermal compression process can be
divided into 4 phases that are illustrated in Figure 1 showing the variation of the CO, pressure as a function of the
displacer displacement. From phase 1 to 2, the displacer descent pushes the CO; to the cylinder upper hot section.
As a result of the elevated temperatures, the fluid pressure starts to rise incrementally. Upon reaching sufficient
pressure, the exhaust valve activates, and CO; is held at a steady pressure from phases 2 to 3, with no pressure loss
from valve flow assumed. At phase 3, the displacer shifts its movement direction, moving the CO; back to the cooler
lower section, which leads to a steady pressure decline. As the pressure drops to a sufficient level by phase 4, the
inlet valve opens, allowing the CO; to revert to its original state at phase 1.

Most of the attempts to model a thermal compressor were based on physical equations. To the authors’ best
knowledge, no statistical based model was derived for a Stirling type thermal compressor. Although such model
would lack important physical aspects inside, it provides a fast and reliable performance predictions based on real
experimental data. The collected data is from 3 separate setups of almost similar test bench layout, which is
introduced in the second section. The third section introduces the machine learning (ML) models that are to be used
to predict the compressor performance. In section four, a sensitivity analysis is introduced to sort the order of
effectiveness of the independent variables on each dependent variable, to find the relevant inputs for each. The data
is then fitted into 3 types of ML models, where a comparison of their accuracy is shown in parity plots with the
Mean Absolute Prediction Error (MAPE) and the R? of each.
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Figure 1: Thermal compression process described by the variation of pressure inside as a function of the
position X of the displacer.
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Figure 2: (a) Test Bench layout with (b) the pH diagram of COz2 in the cycle.

The thermal compressor was installed in a basic heat pump cycle shown in figure 2 (a). It consists of a compressor
(CP), a condenser (COND), an electronic expansion valve (EEV), and an evaporator (EVAP). The EEV is manually
adjusted to regulate the inlet and outlet pressures p;, and pyu:- The CO; in the cycle remains in its subcritical state,
as seen in the p-h diagram figure 2 (b).

The thermal compressor is accompanied with a heat combustion process on the top, where part of the heat is
absorbed (Preqting), and the rest is recovered by a recovery heat exchanger (RHX) in the form of waste heat. An
electric motor (M) with power (P,,,.:0r) IS CONnected to the displacer to ensure its movement, but with a relatively
low power compared to the combustion power. Part of the resulting power is recovered by the cooling water
(Peooting) that circulates around K in a water jacket, and the rest is released to the thermal cycle as an output
enthalpy flow (T,,; and m). The overall ranges of the independent variables (inputs) in the three different
experiments are:

Din: inlet pressure € [23, 48.7] bar.

Pous: OUtlet pressure € [34.4, 64.2] bar.

w: motor rotation speed € [60,260] rpm.

Theater: Neater temperature € [300, 800] °C.

T,,: cooling water temperature € [17.5, 41.8] °C.

T;,: evaporation temperature or temperature of CO; entering the compressor € [1.6, 26.8] °C.

While the resulting outputs (dependent variables) ranges are:

m: mass flow rate of CO2 € [3.6,46] g/s.

®  Ppeqring: Heating power absorbed by the compressor € [461,3774]W.

®  Peyouing: Cooling power or heat rejected to the cooling water € [441,2581]W.
e P,otor: Electric power provided to the motor € [—38,302]W.

e T,,:: Outlet temperature € [37,83]°C.

2.1 Performance curves

Based on the collected data, we show the performance of the tested thermal compressor. Mass flow rate and heating
power, being the two main performance indicators of a thermal compressor are plotted as a function of pressure ratio

. T K
P. = Pout temperature ratio T, = Theater (K] 54 motor speed w:
Pin TW [K]
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Figure 3: 3D plots showing the variation of 7 and Pjeq¢ing as a function of P, T,, and w.
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Figure 4: 2D plots showing the variation of (a) i and (b) Ppeqating as a function of T, and w, at P, = 1.3.

Figure 4 (b) shows a linear variation of the heating power curves, while such curves are of parabolic shapes for what
concerns the mass flow rate. Therefore, the same mass flow rates can be obtained at various heating power values.
An optimal line is drawn on figure 4 (a) depicting the optimal (w, T;-) values that provide highest mass flow rate
values at minimum heat power values for B. = 1.3.

3. ML models

3.1 Regression Models

Regression models are fundamental tools in statistics and machine learning for understanding the relationship
between a dependent variable and one or more independent variables as developed in James al. (2013) book. The
goal of regression analysis is to model the expected value of the dependent variable based on the values of the
independent variables. Yazar et al. (2017) have compared various regression models that were developed to predict
the parameters of a compressor and a turbine. Among these models, a linear Regression (LR) is the simplest form of
regression that assumes a linear relationship between the dependent variable and independent variables. Lety, =
[y1, Y2, -, y] be the predicted output vector, with n as the number of observations. Each predicted output of a
single observation can be described in the form:
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!
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Where y, is the predicted value for the k-th observation, x,; are the input features, g, is the intercept of the model,
B; are the coefficients of the inputs x,;, and [ is the number of inputs which in our case is equal to six. The optimal
model coefficient (8) is determined by solving the ordinary least squares (OLS) minimization problem, which aims
to minimize the squared differences between the predicted values y, and the actual data values y,. The OLS
objective function can be expressed as:

Inﬁin Z(yp - yr)z

The LR and polynomial regression (PR) models are derived using ‘Sklearn’ or scikit-learn library in python, which
comes with several built-in ML algorithms. 80 % of the data is used to train the model, while the rest is used for
validating it.

3.2 ANN Model

Acrtificial Neural Networks (ANNSs) are a cornerstone of machine learning, inspired by the structure and functional
aspects of biological neural networks as described in the book of Haykin (2009). An ANN is composed of
interconnected processing elements, known as neurons which are organized into layers (input, hidden, and output) to
process data. Each neuron performs a linear regression—applying weights w;, summing inputs x;, and potentially
using an activation function f to introduce non-linearity—before passing the result to subsequent neurons. by, is a
bias parameter that helps adjust the output of a neuron independently of its inputs. An output of a k — th neuron is
expressed as follows:

!
Ye =1 (Z Wi X + bk)

i=1

In the context of regression, the model aims to predict continuous outcomes by adjusting the weights between
neurons to minimize prediction error, through a process of training and optimization. This structured approach
allows neural networks to capture complex patterns within the data, facilitating accurate predictions on new, unseen
datasets, and making them particularly suitable for sophisticated regression tasks in a wide array of research and
application fields.
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Figure 5: Structure of k-th neuron of ANN model.

Ziviani et al. (2018) have developed an ANN model for a scroll expander and an injected scroll compressor type,
achieving a higher accuracy than a semi-empirical model, as an ANN model needs no assumptions and can be
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directly trained with experimental data. In this sense, we develop an ANN model for the tested thermal compressor.
The model of each output variable consists of an input and a hidden layer of a maximum of 300 neurons and an
output layer of 1 neuron. Rectifier linear unit (ReLU) is applied on all the layers, ‘Adamax’ is chosen as the learning
algorithm, and ‘Mean squared error’ as the error function with 0.2 as validation set. To increase the nonlinearity and
the accuracy of the ANN model, more hidden layers and neurons can be added, but at a higher risk of overfitting.
The derivation of the ANN model was done using Keras introduced by Chollet (2015), which is a high-level neural
network application program interface, written in python and directly integrated in TensorFlow.

A common indicator of the fit quality of a regression model is the R? metric, which quantifies how close is the data
to the regression model predictions by the following ratio:

CO‘U(yr, yp)
\/COU(_'YT, yr) COU(yp; yp)

R? =100%

A close value to 100% R? indicates a perfect fit, which would indicate that the model is overfitted. To make sure the
predictions are not biased, a second indicator is introduced referred to as the mean absolute percentage error
(MAPE). Which can be represented by the following equation:

100% -
MAPE = > Z |y p
n Y

A 0 % MAPE indicates a perfect fit. Before comparing the models’ accuracies, a sensitivity analysis is carried out to
evaluate the impact of the input variables on each respective output variable. To guarantee a scale uniformity of the
inputs, the training and the testing data are normalized between (0.1, 0.9) by applying:
X — Xmi
Xporm = 08— 4 0.1

Xmax — Xmin

Where x,,,;, and x,,,, are the minimum and maximum values of the defined vector x, and x,,,,-,, iS the resulting
normalized vector.

4. Results and Discussions

4.1 Sensitivity Analysis

In this section, we analyze the sensitivity of each output with respect to the 6 inputs defined previously. The data is
first fitted into a Gaussian process model, and the automatic relevance determination (ARD) is chosen as its Kernel.
As indicated by Quoilin and Schrouff (2016), this Kernel allows the determination of the length scale of the inputs,
where the highest value represents the least relevant input for the selected output. To increase the effectiveness of
this method, a cross validation of 10 folds is applied on each Gaussian model, and the length scale for each is then
determined as the average of all cross-validations. The resulting length scale of each output are as follows:

Table 1: length scale values of the inputs corresponding to each output.

Pin Pout w Theater Tw Ti
m 0.5 0.37 0.62 0.6 0.48 20.35
Preating | 051 | 0.65 | 0.93 0.18 077 | 0.98
Peooting | 055 0.2 0.3 0.83 1.2 0.6
Proor | 044 | 033 | 0.35 0.27 1.14 4.9
T,ut 035 | 055 | 1.13 0.35 1.15 0.7

Higher length scale values are seen in T,, and T;,. To further verify the inputs impacts on the outputs, each of the
outputs is obtained with different sets of inputs by fitting them in PR models and comparing the MAPE and R?
values for each. As seen in the figures below, the highest variation of MAPE and R? on all outputs except T, is
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caused by the addition of w as one of the inputs, which shows that w has the strongest impact. On the other hand,
T;, seems to have the least impact on all the outputs. It’s interesting to see that Pp,,., Can reach a satisfying
prediction (> 93 % R? and < 8 % MAPE) With p;,, Dour, and w as the inputs, while Pyyo1ing aNd Phegeing Would
need Theqcer @S @ fourth input to achieve such accuracy. For m and T, at least first five inputs are needed. As a
result, T, is disregarded in the next section, and the derived models will be dependent on the five first inputs,
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Figure 6: MAPE and R? values of PR models with different sets of inputs.

4.2 Models Accuracies

From 3 different test benches, 251 samples are collected, and used to derive the data-based models. The shown plots
correspond to 20 % of the 251 points that are used to compare the accuracies of the models. As a result, the ANN
model showed the highest predictions accuracy, with not much difference from the PR predictions. Even the LR
predictions are not very distant from the 2 other nonlinear models for Pheating, Peooting, @Nd Toye OUtpULS. AN
advantage of having a good accuracy for PR models is the ability to represent them in algebraically.
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Figure 7: Accuracies of LR, PR, and ANN models.

5. Conclusion

A Stirling type CO, thermal compressor for heat pump applications was introduced. The compressor was tested in a
heat pump test bench cycle. The collected data included six main inputs and five outputs that are used to plot the
performance curves of the thermal compressor. A sensitivity analysis is applied to determine the relevant inputs and
sort the impact of each of the inputs on each output. An artificial neural network (ANN), linear regression (LR) and
polynomial regression (PR) models are obtained taking the relevant inputs for each output as the independent
variables. The three methods are then compared, showing a highest accuracy for the ANN model, closely followed
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by the PR model. Obtaining it can reliably be used in ML tools are reliable to analyze the data, the correlations

between them, and empirical models to predict the performance, both reliably and fast.
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NOMENCLATURE

displacement of displacer (m)
k-th bias )
predicted output vector O]
single predicted output O]
real value O]
inputs vector )
number of inputs O]
number of observations )
inlet pressure (Pa)
outlet pressure (Pa)
Heater temperature (K)
Water temperature (K)
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outlet temperature (K)
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