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ABSTRACT

In the race to fight climate change and live sustainably, heat pumps are becoming increasingly popular due to their
ability to efficiently deliver heat using electricity. However, heat pump performance degrades at low ambient
conditions, making implementation challenging in very cold climates. The introduction of vapor injection (VI) has
been seen in experimental research to improve capacity and coefficient of performance (COP), especially at low
ambient conditions with heat pumps. While the performance of such compressors is heavily researched, the industry
still has no standardized practices for characterizing their performance. Currently, there are standard practices for
testing VI compressors according to ASHRAE 23 and EN 13771 but rating standards do not provide specific guidance
on the selection of test points and the fitting of data. Empirical models, such as AHRI Standard 540’s 10-coefficient
model, exist for fitting the data of non-VI compressors, but there is no equivalent model established for VI
compressors. In order to incorporate the effects of additional varying parameters such as injection pressure,
compressor frequency, superheat, and ambient temperature, new techniques for sampling and fitting data will be
necessary since a fully empirical polynomial approach would require far too many tests and variables. This paper
reviews the current practices/methods for compressor test sampling and performance mapping in academia for both
VI and non-VI compressors. Accurate and reliable compressor performance mapping for VI will be important for the
design and implementation of such compressors in HVAC equipment in the coming years. The authors are engaged
in a multi-year research program funded by the Department of Energy and future work will include the construction
of a compressor test stand that will be used to evaluate best practices for testing and characterizing VI compressor
performance.

1. INTRODUCTION

Manufacturers have growing interest in the realm of vapor injection (VI) as the benefits from this technology are
becoming clear from literature. Climate change has pushed heat pumps to be designed for colder and colder
temperatures. This is where the addition of VI shines in its ability to boost the performance of such heat pumps. With
conventional compressors, manufacturers follow AHRI Standard 540 (and/or similar international standards) to test
compressors and produce coefficients for a standard 10-coefficient polynomial that estimates power and flow rate
(and current and capacity) as functions of saturated suction and discharge temperatures. This model is fully empirical
meaning the fitted coefficients and the form of equations (full third order polynomial with interactions) have no
physical basis; it can produce errors in excess of 10% within the tested domain (Aute et al., 2015), but can result in
much greater errors when extrapolating beyond. Currently, no industry standard exists for vapor injected compressors,
which is a critical barrier to the design and implementation of such compressors in systems.

A model for VI compressors must include injection pressure as an independent variable but should also ideally
consider additional variables including compressor frequency, superheat, and ambient temperature, all of which
influence performance but are overlooked by the current method. If the current methodology were extended, the
inclusion of these additional parameters would result in hundreds of coefficients and test points, making it practically
infeasible. The desired solution should have high accuracy while minimizing the testing burden and incorporating
additional independent variables including injection pressure, frequency, superheat, and ambient temperature. The
ability to accurately extrapolate performance beyond the test domain and apply it to multiple refrigerants is also highly
valuable to heat pump designers. This paper examines methods for sampling and mapping compressor performance
for both VI and non-VI compressors in the search for a preferred method to meet industry needs.
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2. SAMPLING METHODS

Development of models that accurately predict performance requires collection of experimental observations across
the full domain of operating conditions. While AHRI Standard 540 provides a polynomial format for fitting data, it
sets no requirements for the number and distribution of test points. Aute et al. (2015) surveyed six manufacturers and
found that most used 14 or more test points, which were shown to produce accurate maps relative to comprehensive
datasets with over 600 test points. OTS conducted a similar survey in 2024 and found again that most manufacturers
were collecting sufficient test data, but like Aute, learned that a small minority collected less than 10 test points per
compressor, which could potentially lead to overfitting errors with a 10-coefficient model. Furthermore, manufacturers
testing variable-speed VI compressors reported requiring 108-260 test points.

The design of experiments (DOE) plays a key role in determining the accuracy of a model and minimizing testing
burden. Uniform grid-based sampling and traditional DOE methods such as Box-Behnken design, central composite
design, and full- and fractional-factorial design are commonly used by industry, but they can still require a large testing
burden and cannot be easily applied to non-rectangular domains. For example, a factorial design requiring three points
per parameter would still require 3%=81 tests when including suction, discharge, injection pressure as well as
frequency. Adding superheat/suction density and ambient temperature would require an extremely burdensome 729
tests.

Aute et al. (2015) established the “polynomial design of experiments” (PDOE) method using clustering algorithms to
identify uniformly distributed test points within the non-rectangular design space of a compressor envelope. Christ et
al. (2023) extended this work with the scaling polytope design of experiments (SP-DOE) as a similar method for
identifying test points in a non-rectangular design space using clustering. Marchante-Avellaneda et al. (2023) used
D-optimal designs to demonstrate that accurate predictions could be made with less samples and correlations with less
terms: as few as 6 test points were needed for a correlation with only 4 terms to achieve comparable accuracy. Lee et
al. (2022) improved mass flow rate (MFR) prediction using a “two-point prediction method”. Aute et al. (2015) states
“for most compressors, the high errors occur in the region of the envelope with low suction and low discharge dew
point temperatures.” Lee’s approach separates the model into two regions, therefore, reducing the error caused by
extreme temperature differences in the envelope. By assigning reference points to predict condensing temperatures
between 25 to 45 °C and 50 to 60 °C, Lee was able to improve MFR prediction from 34% within 5% error to 57%
within 5% error.

While thoughtful DOE has been clearly demonstrated to improve model predictions and/or minimize compressor
testing burden, it should also be clear that the form of the equations plays an even more critical role. The AHRI 10-
coefficient polynomial has been successful in accurately predicting fixed-speed non-VI performance, however this
method cannot be practically expanded to incorporate more variables. Cambio (2016) extended the logic of the 10-
coefficient model to include injection pressure using 23-coefficients. This approach would obviously be impractical
when adding frequency, superheat, and ambient temperature to create 262 terms. It is therefore necessary to look to
different formulations when seeking to expand the capabilities of compressor maps to meet industry needs.

3. NON-VI MAPS

AHRI 540’s 10-coefficient polynomial has been the standard for modeling fixed speed, non-VI compressors. This is
a simple, empirical-based model that is reasonably accurate. Aute et al. (2015) conducted an analysis comparing this
model with four other proposed models taken from the literature which showed that these models did not improve on
the 10-coefficient model in general. While the generally robust 10-coefficient model has not significantly
outperformed other physics-based and empirical models when fitted to sufficient test data, it does not account for
ambient temperature or superheat, which is a major limitation. Aiding a model with physics-informed parameters
should help to reduce the amount of tests required to model a compressor and may even extend the amount of
refrigerants and compressors that one model can predict. In this sense, semi-empirical models may have the best
advantages to achieve this. The landscape of written literature in this topic further supports this concept. A summary
of the performance of such models can be found in Table 1.

Dabiri and Rice (1981) explored the effects of superheat on MFR using simple correction factor relations on existing
manufacturing maps for previously studied compressors. Power was corrected on the isentropic efficiency assuming
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it does not depend on superheat. Oil fraction and ambient temperature were also identified as parameters affecting
compressor performance where the author concludes ambient temperature may still have a factor in the differences
between their superheat corrected model and the experimental data. Averaging amongst the four datasets, the MFR
deviates by 4.9% from the experimental data compared to the corrected model, which is an improvement over the
original maps deviation of 7.1%. However, in terms of power, the corrected model deviates 5.3% versus 4.7% for the
original model. Aute et al. (2015) also compared the effect of superheat from the same four datasets comparing the
MFR and power of the AHRI model against the physics-based models. They found 6% error for mass flow predictions
on the AHRI model while the physics-based models had 3% error. This makes sense considering the physics-based
models account for suction density which is affected by superheat. Surprisingly, the 10-coefficient model did better
in predicting power for different superheat cases than the physics-based models. In both cases (Aute et al., 2015;
Dabiri and Rice, 1981), the new models were able to improve MFR predictions but performed worse for power.

Marchante-Avellaneda et al. (2023) explored the use of an empirical model with less terms than the AHRI model.
They found that correlations with as little as three terms can produce very good results in predicting MFR and power.
Overall, the correlation with six terms using the temperature “domain” (correlation 3) proved to have the best accuracy
for mass flow while the correlation with six terms using the pressure “domain” (correlation 2) had the best accuracy
for power prediction. While correlation 3 had the best result for mass flow prediction, the authors recommend using
correlation 2 as it has the best compromise between experimental cost and accuracy for mass flow and power.
Additionally, the authors show that use of pressure domain variables provide a more linear relation to the mass flow
and power, which the authors allude may be used more universally with other refrigerants. Interestingly, the authors
state that superheat does have a significant effect on compressor and volumetric efficiencies over a wide range of
operating conditions but does not affect the power consumption. This conclusion is supported by Aute et al. (2015)
and Dabiri and Rice (1981) and may suggest that power consumption is offset by some other mechanism (possibly
lower MFR) even though it is seen to affect compressor efficiency, which in turn, should intuitively affect the power.
Regression analysis from Marchante-Avellaneda et al. (2023) showed statistical significance for all coefficients of
their correlations.

Winandy et al. (2022) developed a physics-based compressor model that predicted MFR and discharge temperature
based on the swept volume and local heat transfer coefficients surrounding the compressor. Compressor power is also
modeled based on the compressor volume ratio, a compressor power loss term and the power coefficient. This resulted
in a good fit to the experimental data, having maximum percent errors of 3.5% for mass flow, 3% for power and
maximum absolute error of 5K for the discharge temperature. However, this requires intimate knowledge of the
compressor geometry, which will be undesirable for compressor manufacturers as such data may be deemed
proprietary information.

A more exciting type of modeling that has seldom been researched is the use of artificial neural networks (ANN) to
obtain models for compressors. The recent explosion of the use of Al has become more and more relevant in many
applications and as the technology to train Al has gotten better, its potential for modeling compressors cannot be
ignored. Ma et al. (2020) has explored the use of such machine learning techniques in three different compressors
types (refer to Table 1). They were able to achieve slightly better predictions with the ANN with one less sample
training the model against the 10-coefficient model using 11 samples. Belman-Flores et al. (2015) were able to achieve
under 1% mean percent error (MPE) for mass flow, power and discharge temperature relative to the experimental
data. In comparison, the physics-based model had mass flow, power and discharge temperature MPE of 7%, 7.5% and
0.18% respectively. While the author used 80% of the total data for training the model, which is a cause for concern
of overfitting the data, the number of hidden layers was optimized to prevent overfitting.

Hjortland and Crawford (2024) performed a study of their own semi-empirical model with a massive dataset of 26
refrigerant/compressor combinations. This was compared directly to the 10-coefficient model which performed better
than the proposed model when all data was used to obtain the model for predicting mass flow and power. However,
when fewer training points were used, the 10-coefficient model performed worse. For discharge temperature, the
proposed model proved to be superior regardless of the number of training samples. The model is elegant in its
simplicity, using only 2-4 fitted coefficients for each of the predicted values, but maintaining fidelity due to its use of
physical quantities like density, pressure, and temperature.
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Author Refrigerant / Model Type Details Error
Compressor
Belman- . -ANN 0.8% MFR MPE
Flores et al., Rlég’:iy]:blzit?:'a‘/ PE%S'?Z&?Id -Dataset for each 0.8% Power MPE
2015 P g P refrigerant* 0.08% Discharge MPE
. - 10% MFR MaxPE
Byrggledtf al, R407C / Scroll err?e;?iltgal gf;;giigoég)%% 10% Power MaxPE
P 5K Discharge MaxAE
: 3 g/s MFR MaxAE
L%E?ng ;839 R134A / Scroll erﬁemiltzal -Variable speed -24 W power MaxAE
' P -0.5K Discharge MaxAE
Dabiri and -Accounting for Suction 4.9% MFR MPE
Rice 1981 R22 / Reciprocating Empirical SH 5.3% Power MPE
' -4 datasets*
GugoeltYal., R410A / Scroll Empirical -Variable speed 20% Power MaxPE
Hjortland . . . -Use 14 data points vs all 1.3% MFR MAPE
and Variable refrigerants / Semi- bl 0
Crawford Mostly Scroll empirical available 1.4% Rower MAPE
2024 ’ -26 datasets* 3.5 K Discharge MAE
Jahnig et al., Rég’éArggaFfif ! Semi- 'Czprft')?ee;tetfgﬁft of 2.9% MFR MaxPE
2000 P g empirical 21 datasetsf 1.9% Power MaxPE
Leeetal., R32, D2Y-60, L-41A/ Empirical _Factor in SH 0.9% MFR MPE
2021 scroll P 0.3% Power MPE
Leeetal, | R410A/Rolling Piston | SeM"- -2-point prediiction 10% MFR MaxPE
2022 empirical
Lee and R22, R134A, R407A, Semi- 1.5% MFR MPE
Lam, 2013 R410A / Scroll empirical 8.9% Power MPE
-5% MFR
R12, R134A, R22, . 3.2% MFR MaxPE
. Semi- -8% power
Li, 2012 R410A / empirical 8 datasets* 1.9% Power MaxPE
Scroll or Reciprocating P . 2.7K Discharge MaxAE
-Max relative extrapolate
Ma et al., F;‘i?Ar éciﬂfirr?”' Empirical -ANN 1.9% MFR MAPE
2020 procating, P -3 datasets* 2.2% Power MAPE
Rolling piston
Mackensen R134A, R22, R717, Semi- 1.8% MFR MAMWE
R22 / Scroll, Recip., . -25 datasets* 6.8% power MAMWE
et al., 2002 empirical
Screw, Rotary
-Correlation 3 best for
Marchante- MFR 1.3% MFR MaxPE
Avellaneda R134A, R32, RA10A, Empirical -Correlation 2 best for 1.9% power MaxPE
R404A / Scroll
etal., 2023 power
-10 datasets*
- - 0,
Ngvarro R290, R407C / Semi- Scroll model performed <5% MFR and power
Peris et al., Scroll, Reciprocatin empirical Worse MaxPE
2013 ' P g P -4 datasets*
Ossorio and . .
Navarro- R290, R410A, R134A Sem_l- -Variable speed 8.7% Power loss MaxPE
. / Scroll empirical -3 datasets*
Peris, 2023
Winandy et 3.5% MFR MaxPE
al 20(3)/2 R22 / Scroll Physics 3% Power MaxPE

5K Discharge MaxAE

*Absolute average taken for errors across datasets where multiple are available
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Jahnig et al. (2000) also compares a proposed 5-parameter semi-empirical model against the 10-coefficient model
with 21 combined datasets. Surface level inspection shows the 10-coefficient model outperforms the proposed model,
but deeper analysis reveals this is due to the lack of datapoints available to perform an error analysis. On the flip side,
the new model stayed relatively consistent with its errors regardless of the number of available data points. Marchante-
Avellaneda et al. (2023) assessed the compromise between experimental cost and accuracy, therefore, looking at the
accuracy per available sample might also provide valuable insight into the value per cost of a model as a standardized
metric or the training sample normalized model accuracy (TSNMA). Accounting for the number of samples has a
real-world impact on the resources spent to obtain a model. To do this, we can assume the minimum required samples
for each model; 10 for 10-coefficient model and 4 for the 5-parameter model (mass flow and power model have 2 and
3 parameters respectively)). Therefore, the average model accuracy per sample of training data for mass flow and
power are 9.6 %/sample and 9.9 %/sample, respectively for the AHRI model. Conversely, for the 5-parameter model,
the accuracy per sample of training data for mass flow and power are 24.2 %/sample and 24.5% %/sample,
respectively. The higher the number, the better, which indicates more accuracy value per sample trained. Here, it
shows the proposed model can give you better accuracy with fewer trained samples.

Jahnig et al. (2000) also plots the curve fit of the AHRI model which clearly shows why it is bad at extrapolating
performance. The nature of the polynomial causes it to skew wildly outside the fitted data which simply does not make
physical sense. The author also tests the model with data that contained different ambient temperatures. They expected
slightly lower MFR due to lower suction densities and little change to power due to lower MFR being offset by higher
work increase. Results show little change to MFR with respect to ambient temperature and large underpredicted errors
in power with respect to ambient temperature. Li (2012) was able to show extrapolation capabilities with their semi-
empirical model, which showed comparable errors to the fitted data. Li (2012) also tested their model at different
ambient temperatures using data provided by Jahnig et al. (2000) and found similar MFR and power.

Lee et al. (2021) tests their empirical model at various ambient temperatures. In their approach, results at lower
ambient temperatures underpredicted power and MFR by as much as 11% and 62.5%, respectively for the original
AHRI model. This improved to 0.7% and 0.4% for power and mass flow respectively with the new corrected map.
Lee et al. (2021) explains the cause is because of the higher pressure ratios, which in turn, cause lower volumetric
efficiencies. Lower volumetric efficiencies with respect to ambient temperature may explain the underprediction of
power in the Jahnig et al. (2000) and Li (2012) model.

Ossorio and Navarro-Peris (2023) and Cuevas and Lebrun (2009) comment on the effect of variable frequency on the
compressor model. Compressor efficiency is diminished at low frequencies, which is explained by the lack of
lubrication that leads to leakages. Guo et al. (2017) also performs a correlation analysis showing high correlation
between compressor frequency and power.

Review of literature here has shown that the AHRI model has significant limitations that can be improved upon. If an
empirical model is to be used, it could be improved over the AHRI model with less terms using pressure domain.
Additionally, many semi-empirical models were developed and showed these models can be better than the AHRI
model with less training samples and/or improved ability to extrapolate or apply to different refrigerants. A new metric
is also proposed to compare accuracy per training sample for the Jahnig et al. (2000) model.

4. VI MAPS

Although VI compressors have been utilized in refrigeration systems for many years now, their adoption into consumer
and commercial heat pump products is relatively recent. As such, the capabilities of the conventional 10-coefficient
model have not met the greater demands for a compressor model that can accurately predict VI performance to support
present engineering design work. A summary of relevant studies is listed in Table 2 with highlights noted below.
While the lessons learned from non-VI modeling assessments can be applied and expanded for VI technology, VI
introduces significantly more complexity that must be considered.

Winandy and Lebrun (2002) developed a model that works for both vapor and liquid injection. This physics-based

model accounts for the heat added and taken away from the refrigerant entering and exiting the compressor from the
heat generated by the compressor itself and the ambient, signified by the “fictitious thermal wall”. Among the physics
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models in this review, this model has proven to predict mass flow, power and discharge temperature fairly accurately,
only second to the model from Wang et al. (2008), which has a more complicated set of equations and accounts for
refrigerant leakage. Direct comparison should be taken with the understanding that a different set of data is being used
for these models, despite having the same refrigerant and compressor type.

Cambio (2016) proposed a fully empirical 23-coefficient model but found that only 5-11 factors were statistically
significant, which is supported by the Marchante-Avellaneda et al. (2023) model in which less is more.

Tello-Oquendo et al. (2017) modified the AHRI model by adding an extra term to consider injection pressure and
introduced a simple injected mass flow correlation to intermediate pressure which is inspired by Navarro et al. (2013).
With this simple madification, they found maximum percent errors (MaxPE) of 4.4%, 1.8% and 2.9% for power,
suction MFR and injection MFR, respectively. Then in 2019, Tello-Oquendo et al. (2019) developed a semi-empirical
model for VI compressors, utilizing the same injected mass flow correlation to intermediate pressure and accounting
for compressor speed. The model includes 6 fitted coefficients and physical properties such as heat coefficient from
ambient temperature, leak area inside the compressor, volume ratio and electric efficiency which are design parameters
determined by superheat, pressure, volumetric efficiencies etc. Results show improved or comparable prediction
accuracies over physics-based models. However, compared to their 2017 empirical model, the 2019 semi-empirical
model did not improve and performed relatively the same. A limited study was also performed on the effect of injection
superheat on the model. The study showed the maximum deviations for the injection MFR, compressor power and
discharge temperature were 3%, 3% and 2K respectively, which is promising, but more samples are desired to further
prove and verify the model. Additionally, even though the model accounts for variable speed, it is not clear whether
variable speed was tested.

The compressor model from Christ et al. (2022) takes inspiration from the models of Winandy and Lebrun (2002) and
Tello-Oquendo et al. (2019) to combine the two-step adiabatic process and the pressure ratio relation to injection mass
flow. This model provides an “optional” injector which suggests this model application for VI and non-VI
compressors. Data from Christ et al. (2022) points out the injection mass flow relation to pressure ratio presented by
Tello-Oquendo et al. (2019) only applies at constant compressor speeds. This is supported by Hjortland and Crawford
(2023) but conflicts with Sjoholm et al. (2022). Christ et al. (2022) also show results as efficiencies or normalized
values which are analogous to the MFR, power and discharge temperature. Maximum relative error is high for the
power consumption, which may be problematic for confirming absolute values, but this model was able to demonstrate
extrapolation of data with a relatively small increase in maximum error for the MFR and discharge temperature.
Although the metrics are not identical and therefore, a direct comparison cannot be made, if the Christ model is
compared to the Winandy and Lebrun model, the semi-empirical model may be better in terms of MFR but worse in
terms of power. Results are not shown for the injection flow rate. A key concern with this model is the use of physical
compressor specifications (e.g. efficiencies, losses) that would not commonly be shared by a compressor
manufacturer; this contrasts the AHRI model whose coefficients reveal no physical information about the product.

Ziviani et al. (2017) proposed an ANN model which was compared to the Lumpkin et al. (2017) Buckingham Pl semi-
empirical model. Results for the ANN model shows suction mass flow, injected mass flow, power, and discharge
temperature MAPEs (maximum absolute percent error) of 1.2%, 2.6%, 0.5% and 0.2%, respectively. For the semi-
empirical model, the results are 1.8%, 13.8%, 0.5% and 0.3%, respectively. The proposed model essentially performs
the same in power and discharge temperature, performs slightly better in terms of suction mass flow and performs
significantly better in injection mass flow. The same comparison is done for two-phase injection, a configuration
rarely explored in the research and shows that, for such a case, the ANN model cannot accurately predict injection
mass flow or power. Zendehboudi et al. (2017) also incorporates ANN and Adaptive Neuro Fuzzy Inference System
(ANFIS) to model a variable speed scroll compressor with VI. Comparing the two models, the ANFIS model performs
the same or better than the ANN model, especially with the injection flow rate prediction. They also show the mean
square error of the model with varying hidden layers, which shows that for six inputs and five outputs, nine hidden
layers gives the lowest mean square error. Although the results are promising, one point of criticism that should be
addressed is the fact that more than double the amount of the validation data was used to train the model.

Feng et al. (2009) explores a physics-based model of a scroll compressor using liquid injection and reports decent
uncertainty in predicting power and discharge temperature. However, at evaporating temperatures below -30°C, the
accuracy of the model “cannot be guaranteed.” The two-point prediction method from Lee et al. (2022) may help with
this issue as it would divide the model into two operating regions to predict the parameters.
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Table 2: Vapor Injection Literature

Author Injection Refrigerant / Model Details % Error
Type Compressor Type
. . . 3.3% Volumetric efficiency MaxPE
Chrlzséze; al, Vapor | R410A / Scroll Semi- | -Varlagle 7.5% Compressor efficiency MaxPE
empirica spee 1.8% Discharge efficiency MaxPE
6.75% Suction MFR MaxPE
Dardenne et Vapor R410A / Scroll Semi- -Variable 7.75% Inj MFR MaxPE
al., 2015 empirical speed 7.46% Power MaxPE
9.13K Discharge MaxAE
Dechesne et . -Variable 99.9% Suct!on MFR R?
al 2015 Vapor Scroll Empirical speed 94.3% Inj MFR R?
' 98.4/95.6% Power R?
0,
Fenzgogga"' Liquid | R22/Scroll | Physics o /Slzé’r‘]’;ergg"&’;iiE
1.9% Suction MFR MAPE
Hjortland et Vapor R410A, Semi- -4 6.1% Inj MFR MAPE
al., 2023 R407C/ Scroll | empirical | datasets* 1.9% Power MAPE
3.7K Discharge MaxAE
3% Suction MFR MaxPE
. \Jari o I
K'?O%al" Vapor R410A / Scroll Physics \{Sa;l)gggle 75/8 /OI ryol\\//lveFrRMl\gi)I;EE
3K Discharge MaxAE
Lumpkin et Semi- -Variable 1% Volumetric efficiency MaxPE
aI.,p2017 Vapor R407C / Scroll empirical speed 2% lsentropic efficiencyyMaxPE
Ning et al., Vapor R410A / Physics -Variable 5% Power MaxPE
2023 2-phase Rotary speed 5K Discharge MaxAE
Park et al., . -Variable 7.5% Power MaxPE
2002 Vapor R22 [ Scroll Physics speed 10% Discharge MaxPE
Tello- _ Variable 1.95% Sucti_on MFR MaxPE
Oquendo et Vapor R407C / Scroll Sef“." speed 3.97% Inj MFR MaxPE
al 2019 empirical term 4.47% _Power MaxPE
' 3.24K Discharge MaxAE
Tello- 20190 10 MFR P
.. . 0 Inj ax
Oglue;gf?et Vapor R407C / Scroll | Empirical 4.4% Eower MaxPE
) 3.13% Inj Pressure MaxPE
3% MFR MaxPE
o i
Wagg;é al. Vapor R22 / Scroll Physics 44/8 /OI ryol\\//lveFrRMl\gi)I;EE
2% Discharge MaxPE
4.5% Suction MFR (13.5% w/ Liquid
Winandy and Vapor . Inj) MaxPE
Lebrun,y2002 LinL)Jid R22 [ Scroll Physics 4.5% l%wer MaxPE
5K Discharge MaxAE
ANN ANN vs AFNSI
Zendehboudi | -AFNSI 2:2% vs 2.3% MFR MaxPE
etal 2017 Vapor R410A / Scroll | Empirical Variable 12.7% vs 4.1% Inj MFR MaxPE
' speed 2.4% vs 1.7% Power MaxPE
2.5% vs 2% Discharge MaxPE
1.2% Suction MFR MAPE
Ziviani et al., Vapor .. 2.6% Inj MFR MAPE
2018 2-pr?ase R407C / Scroll | Empirical -ANN 0.5% Ffower MAPE

0.2% Discharge MAPE

*Absolute average taken for errors across datasets where multiple are available
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The landscape of VI maps shows an even interest in the three types of models. There are gaps in the literature space
where more liquid and two-phase injection testing is needed as well as modeling for those injection types. Tello-
Oquendo et al. (2017, 2019) points out the relation between pressure ratio and injection MFR but two out of three
identified sources state this is also dependent on frequency. Models are just starting to be applied to other types of
injection such as liquid injection with the model from Winandy and Lebrun (2002) but this is physics-based. One of
the best results that modeled injection flow rate well was the Ziviani et al. (2017) ANN model but took 80% of the
available data to train the model. In this regard, the Tello-Oquendo et al. (2019) semi-empirical model may be the best
model thus far in terms of accuracy to required training points. In any case, either injection flow rate or power has the
highest uncertainty and it may be worth making direct comparisons with these models.

5. CONCLUSIONS

There is a growing need for improved VI compressor models for the design of heat pump systems. There are a number
of documented compressor models in the research, both with and without VI. The quantity and sampling approach of
measurements are important and testing burden can vary significantly depending on the model being fitted. While the
AHRI 540 10-coefficient model has been very successful as a tool to communicate compressor performance
information and make predictions in simulation/design tools, the current approach cannot reasonably be extended to
include additional variables that are increasingly important: vapor injection pressure, frequency, superheat, and
ambient temperature. Several publications have produced improved models that incorporate some of these
independent variables, but insufficient data has been shown to demonstrate successful predictions across a wide range
of all these varying parameters.

It is also important to consider that compressor models are most often used in the context of a system simulation
software that iteratively solves the compressor along with an assortment of other components that comprise a vapor
compression cycle. As such, a fast, smooth, continuous, predictable behavior is essential for integration into these
tools. An area for concern with machine learning models is the potential for disjointed and nonlinear behaviors without
physical basis that could prevent a system solver from achieving convergence. An increasing interest in transient
modeling means that dynamic models of VI compressors must be developed alongside steady state ones. Furthermore,
models that utilize physical parameters like displacement volume, volume ratio, efficiency, and loss terms will likely
fail to gain traction due to manufacturer resistance to disclose proprietary details. Semi-empirical models like those
of Tello-Oquendo, Cambio, and Hjortland and Crawford achieve high levels of predictive power while using
coefficients that do not directly betray proprietary physical specifications. These approaches provide a solid
foundation that can be expanded on to include dependence on all six relevant variables highlighted here.

A review of the literature also reveals gaps in testing and modeling of liquid and two-phase injection. It would be
prudent to develop models that can be extended to any injection state. Planned future work includes fabrication of a
test facility with a calorimeter and an in-depth test suite of a sampling of multiple VI compressors including changes
in compressor frequency, injection pressure, superheat and ambient temperature. Comparisons will be made between
various sampling methods, existing modeling methods and new approaches proposed by the authors.

NOMENCLATURE
HVAC Heating, Ventilation, Air Conditioning )
COP Coefficient of Performance )
VI Vapor Injection )
AHRI Air-conditioning, Heating, and Refrigeration Institute )
DOE Design of Experiments )
LHS Latin Hypercube Spacing )
PDOE Polynomial Design of Experiments )
SP-DOE Scaling Polytope Design of Experiments )
MaxPE Maximum Percent Error )
MaxAE Maximum Absolute Error )
MPE Mean Percent Error )
MAE Mean Absolute Error )
MAPE Mean Absolute Percent Error )
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MAMWE Maximum Average Mean Weighted Error )
R? Coefficient of Determination )
ANN Acrtificial Neural Network )
ANFIS Adaptive Neuro Fuzzy Inference System )
OEM Original Equipment Manufacturer )
TSNMA Training Sample Normalized Model Accuracy )
MFR Mass Flow Rate )
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