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ABSTRACT

Compressor testing typically requires specialized test stands with several controlled process variables. The use of
advanced control methods, which are often model-based, requires a suitable model, either for its synthesis or for its
operation. As most compressor test stand dynamics are moderately nonlinear and time-varying, online estimation
of nonlinear models is a valuable strategy because it enables the use of advanced model-based controllers that can
accurately capture nonlinearities and adapt to changing dynamics. One type of model that has been explored in the
literature for online nonlinear estimation is the echo state network, a recurrent artificial neural network architecture that
can be trained efficiently. This paper presents an approach which can be used online to identify a nonlinear model of a
compressor test stand based on an echo state network, with its output layer weights being estimated using a recursive
least squares algorithm. This scheme enables the identification of a nonlinear model without the computational cost
typically required to train recurrent neural networks, making it possible to estimate these parameters in an online
manner. The evaluation was performed using a real test stand in a scenario in which a multiple-input and multiple-
output model was obtained. An adaptive linear model was used as baseline method. The results show that the proposed
approach provides significantly better results than the linear baseline, as the linear model was unable to adequately
model the nonlinear characteristics of the test stand. The proposed model presented a 34% lower root mean squared
error than the baseline.

1. INTRODUCTION

Advances in refrigeration compressor technology are associated with the ability to test compressors to quantify the real
benefits of each modification. In several stages of its development, the compressor is tested by subjecting it to various
operating conditions that are representative of real-world scenarios. An example is the performance evaluation tests,
regulated by standards such as EN 13771-1 (CEN, 2016) and ASHRAE (2005), were several test aspects are specified.
One key requirement is to maintain the compressor under specific operating conditions, with variables such as suction
and discharge pressures being controlled around certain reference values with low variability. Thus, the improvement
of control performance in these tests is important, as the ability to reach the required operating conditions faster results
in reduced test duration and fewer hardware and human resources used (Flesch & Normey-Rico, 2010; Chesi et al.,
2012).

These performance evaluation tests are performed on dedicated test stands, equipped with the resources needed to reach
the test operating conditions and the hardware to measure the desired quantities. Typically, these test stands regulate
compressor operating conditions by controlling variables around specific reference values, commonly including the
temperature of the refrigerant fluid at the suction inlet, suction pressure, and discharge pressure. Even though the
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dynamics associated with such test stands present nonlinear dynamics and time delays, they are traditionally controlled
by static single-input and single-output linear controllers, such as proportional-integral-derivative (PID) controllers.
In this case, the variables of interest may exhibit sluggish or oscillatory responses in closed-loop operation, or it may
be necessary to detune the controllers to avoid coupling, thereby prolonging the test duration. Based on that, the use of
advanced control strategies, such as nonlinear model predictive control (MPC), is promising, as it can improve control
performance and test productivity (Flesch & Normey-Rico, 2010; Flesch et al., 2011, 2012; Dangui et al., 2018; Taheri
et al., 2022).

Recent advances in nonlinear MPC have enabled the adaptive control of complex processes using models based on
echo state networks (ESNs) (Armenio et al., 2019; Jordanou et al., 2018), with network parameters estimated through
recursive least squares (RLS) methods (Schwedersky et al., 2022a,b). With these advances, it is possible to obtain a
nonlinear MPC for a process such as a refrigeration compressor test stand without the need to obtain a conventional
process model, since the model can be estimated online.

This paper investigates the problem of obtaining a suitable nonlinear model, based on ESNs, to identify the dynamics
of a real refrigeration compressor test stand, which is a fundamental step towards the implementation of an adaptive
nonlinear MPC. The model is estimated online, using an RLS-based algorithm, with the results being evaluated in a
real test stand. An adaptive first-order transfer function also estimated online with an RLS method is used as a baseline
model to illustrate the advantages of using the proposed approach.

The paper is organized as follows. Section 2 presents the ESN model and its online estimation algorithm. Section 3
introduces the refrigeration test stand used in the experimental evaluation. Section 4 presents the model estimation
procedure and the estimation results. Section 5 presents the conclusions of the paper.

2. ONLINE ECHO STATE NETWORK FOR SYSTEM IDENTIFICATION

An alternative for identification of nonlinear models is employing the echo state network, which constitutes an artificial
recurrent neural network (RNN) based on reservoir computing principles. In this learning framework, a static RNN,
referred to as the reservoir, generates a series of dynamics that can be harnessed in a readout layer to construct the
model output, typically via a linear combination (Jaeger, 2003; Lukoševičius & Jaeger, 2009). With this fixed RNN,
solely the ESN readout layer is subject to training, facilitating the execution of the learning task in an online manner,
which includes the case in which the RLS algorithm is used for this purpose (Schwedersky et al., 2022b).

There are various conceivable ESN configurations and the focus of this study is on a specific structure with an input
layer connected to a reservoir and a linear readout layer connected to both the model input and the reservoir output.
The weights of both the input layer and the reservoir are defined before the training phase and remain constant during
the whole process. The only trainable portion of the model is the weights of the readout layer. This ESN model can be
represented by a pair of equations, namely the state and output equations. The state equation delineates the transition
of the reservoir state as follows: for a reservoir of dimension s, the state x of the reservoir at time k is:

x(k) = tanh(Win [
1

u(k)] +W
resx(k − 1)) , (1)

where u ∈ Rn represents the input and x ∈ Rr is the signal of the reservoir state. Additionally, Win ∈ Rr×(n+1) is
the matrix for input weighting; Wres ∈ Rr×r is the matrix with the recurrent weights of the reservoir; and tanh(⋅)
corresponds to the hyperbolic tangent function, which is defined as:

tanh(q) = 1 − e−2q

1 + e2q
. (2)

The readout equation is given by:
ŷ(k) =Wout [1 x(k)T u(k)T]T , (3)

where ŷ ∈ Rm represents a vector containing the estimated outputs, while matrix Wout ∈ Rm×1+r+m is a matrix with
the weights connecting the input and the reservoir to the readout layer. Since (3) defines a linear readout, the weights
Wout can be estimated online using an RLS method, which is the estimation approach used in this study. The online
estimation framework used in this paper is shown in the block diagram in Figure 1.
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Figure 1: Block diagram for the ESN estimation task. Only the reservoir readout connections, represented by matrix
Wout, are estimated online, because matricesWin andWres are static, generated before training.

Asmentioned before, in thismodel bothWres andWin are predetermined and not subject to training. A common practice
is to generate those values using a uniform distribution. The input matrix is constructed with sparse weights and is
appropriately scaled to prevent initial saturation of the reservoir states. Of particular significance is matrixWres, as it
governs the recurrent connections among reservoir units. The pivotal parameter is the matrix spectral radius ρ(Wres),
which is associated with its largest eigenvalue, directly influencing the stability of the model. A prevalent approach
involves constructing a reservoir with a predefined sparsity and adjusting it to achieve the desired spectral radius. If
the reservoir is stable and its states converge asymptotically under the influence of an input signal, it possesses the
echo state property. For the ESN model used in this study, a prerequisite for the echo state property is ρ(∣Wres

res∣) < 1,
where ∣Wres∣ denotes the absolute value of each element. A comprehensive exploration of the echo state property and
the criteria for achieving it can be found in Yildiz et al. (2012).

The sole trainable matrix in this context is Wout, which determines a linear combination of both inputs and reservoir
states, supplemented by a bias term. To simplify the notation, an augmented variable:

x̄(k) = [1 x(k)T y(k − 1)T]T (4)

can be defined and the network output can be expressed as:

ŷ(k) =Wout(k)x̄(k). (5)

The identification process is accomplished using the data collected during the plant operation. This task generally
involves determining themodel parameters that minimize a cost function, such as the one-step ahead prediction (OSAP)
error, which is defined as Ljung (1999):

J = 1
Am

m
∑
i=1

T
∑
j=1
∥yi(j) − ŷi(j ∣ j − 1)∥2 , (6)

where m denotes the number of outputs; yi(j) is the measured value for i-th output at the instant of time j; ŷi(j ∣ j − 1)
is the predicted value for i-th output at the instant of time j defined with information up to the instant of time j− 1; and
A is the number of output observations.

To determine the optimal value of Wout(k) that minimizes the estimation error, according to the cost function in (6),
an RLS method with an adaptive forgetting factor is considered in this study. When new data is available,Wout(k) is
updated with

Wout(k) =Wout(k − 1) + P(k)x(k − 1)
1 + ξ(k)

ê(k), (7)

where
ξ(k) = x(k − 1)TP(k)x(k − 1), (8)

ê(k) = y(k) −Wout(k − 1)x(k − 1). (9)
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In the RLS algorithm, P(k) denotes the covariance matrix, which is continuously updated as (Bobál et al., 2006)

P(k) = P(k − 1) − P(k − 1)x(k)x
T(k)P(k − 1)

ε−1(k) + ξ(k)
, (10)

ε(k) = φ − 1 −φ
ξ(k − 1)

, (11)

when ξ(k) > 0, or kept constant otherwise, i.e.

P(k) = P(k − 1) if ξ(k) ≤ 0. (12)

The purpose of the forgetting factor is to enhance the representation of the ESN output weights,Wout(k), with respect
to the current system measurements, by adjusting the importance of previous measured values. In the proposed ESN
readout estimation algorithm, an adaptive forgetting factor φ(k) is used instead of a constant value φ, as typically
assumed in conventional RLS algorithms (Jaeger, 2003). The parameter φ(k) serves as a dynamic forgetting factor,
capable of assuming varying values throughout the estimation process within the range 0 < φ(k) ≤ 1. Due to its adapt-
ability, the algorithm can effectively monitor changes in the process parameters, thereby updating the estimated ESN
parameters according to the direction in which new process data are measured. This directional forgetting approach is
defined as (Kulhavý, 1987):

φ(k)−1 = 1 + (1 + ρ)[ln(1 + ξ(k))]

+
⎛
⎝
(υ(k) + 1)η(k)
1 + ξ(k) + η(k)

− 1
⎞
⎠

ξ(k)
1 + ξ(k)

, (13)

where
η(k) = ê(k)2

λ(k)
, (14)

υ(k) = φ(k)[(υ(k − 1) + 1)], (15)

λ(k) = φ(k)
⎛
⎝
λ(k − 1) + ê(k)2

1 + ξ(k)
⎞
⎠
. (16)

The parameter ρ ∈ [0,1] is used to specify the extent of the prior information retained in each iteration, where smaller
values indicate that less information is discarded (Bobál et al., 2006). The proposed online ESN estimation, incorpo-
rating the directional forgetting factor, is detailed in Algorithm 1.

Algorithm 1 Online ESN estimation using recursive least squares with adaptive directional forgetting.
1: Measure the current process outputs;
2: Obtain the directional forgetting factor φ(k)−1 using (13);
3: Update the covariance matrix P(k) using (10);
4: ObtainWout(k) using (7);
5: Return to step 1.

3. REFRIGERATION COMPRESSOR TEST STAND

The refrigeration compressor test stand investigated in this study serves the purpose of performing tests on refrigeration
compressor samples in industry. These tests involve subjecting the sample to various operating conditions, simulating
its performance in several types of refrigeration systems. The test stand incorporates valves connected to the com-
pressor suction and discharge lines, enabling the manipulation of the pressures within these lines. These valves are
interconnected with a buffer tank, which partially decouples suction and discharge pressures. The circuit is based on a
superheated gas cycle, so there is no phase change. Figure 2 presents a simplified piping and instrumentation diagram
of the process alongside a picture of the experimental test stand.
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Figure 2: Refrigeration compressor test stand: (a) simplified piping and instrumentation diagram; (b) picture of the
experimental setup

The valve in the suction line is normally closed, resulting in the suction pressure being directly proportional to the
applied voltage. Conversely, the valve connected to the discharge line is normally open, causing the discharge pressure
to also be directly proportional to the applied voltage. Due to the inherent characteristics of the process, there is coupling
between the suction and discharge pressures, such that changes in the suction valve position affect not only the suction
pressure but also the discharge pressure. However, the interaction between the discharge valve and the suction pressure
is minimal, as it is nearly entirely offset by the buffer tank.

4. EXPERIMENTAL RESULTS

In this section, the results of the dynamic identification of the refrigeration test stand are presented. For the sake of
brevity, only the discharge pressure dynamics are discussed. The discharge pressure was selected as it presented a
more nonlinear behavior than the suction pressure, making the use of a nonlinear model more suitable. The procedure
for estimating the model online is presented in Section 4.1 and the results and comparison with a baseline model are
presented in Section 4.2.

4.1 Model Estimation
To estimate the ESNmodel, a scenario in which the test stand was manually controlled was considered. In this scenario,
the discharge valve voltage was changed randomly, with the suction valve voltage kept constant throughout the esti-
mation and model testing phases. These random changes were designed using an amplitude-modulated pseudorandom
binary sequence (APRBS), as described in Nelles (2001), to cover all possible test stand operating conditions.

The ESNmodel was created considering a 300 unit reservoir matrix,Wres
res, with a sparse connection rate of 1% between

reservoir units. The non-zero weights in Wres
res are sampled from a uniform distribution in the interval [−1,+1]. The

selected spectral radius was ρ(Wres
res) = 0.99, so the reservoir matrix was re-scaled to set its largest eigenvalue as 0.99.

The input matrix, Wres
in , was created dense, with all weights equal to +1 or −1 (50% of each case), and further re-

scaled considering an scale factor of 0.1, to avoid initial saturation of the reservoir connections. The RLS estimator
was initialized considering the main diagonal elements of the covariance matrix as P(0) = 10; φ(0) = 1; λ(0) = 0.1;
ρ = 0.6; and υ(0) = 10−6.

The estimation of the ESN model is presented in Figure 3, which contains the discharge pressure, the discharge valve
voltage, and a subset of weightsWout during the estimation phase. The ESN weightsWout were updated using the RLS
algorithm, with all parameters being initialized as 0 in the beginning of the estimation process. As the ESN model
evolves during the estimation, the weights in Wout are updated, with most changes occurring when the discharge
pressure reaches previously unseen operating conditions, for example, between 1100 s and 1250 s. As this estimation
was conducted on a real test stand, which presents nonlinearities and time-varying behaviors associated with non-
measured variables, the model parameters were updated during the entire estimation scenario, with the final model,
obtained at time 2500 s.
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Figure 3: ESN online estimation results.
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Figure 4: Model performance evaluation for a test scenario.

4.2 Model Performance
After the online training, the final ESN model parameters were kept constant for performance evaluation. For this
purpose, a test scenario was designed to evaluate the model performance for all possible operating conditions of the
test stand. This scenario consisted of changes in the discharge valve voltage between 2V and 8V, which are the voltage
values that represent the maximum and minimum operating values.

The proposed model was compared with a discrete-time model, linear in its parameters, described as

yl(k) = −a1yl(k − 1) + b1u(k − 1), (17)

with a1 and b1 estimated using an RLS with directional forgetting factor. This baseline was estimated simultaneously
with the proposed model, and the results for the evaluation using the test scenario are presented in Figure 4.

The proposed ESN model clearly outperformed the baseline linear model, being able to model the nonlinear character-
istics of discharge pressure dynamics with better precision. The linear model presented results closer to the measured
data when the discharge pressure was close to its maximum and minimum values. However, when the pressure reached
intermediate values, the linear model presented larger errors, due to nonlinear behavior of the discharge pressure dy-
namics. However, the proposed ESN model was able to adequately model this nonlinear behavior, presenting lower
error during almost the entire test scenario.

The proposed model presented the largest errors between 500 s and 900 s, but in this interval the performance of both
models is quite similar. The main reason of this modeling error is the occurrence of a non measured disturbance, which
can be quite common in this type of process, due to the complexity of the phenomena associated with refrigeration
systems.

The overall performance of the model was also evaluated using the root mean-squared error (RMSE) and the determi-
nation coefficient (R2) performance metrics, with the values obtained during the test scenario presented in Table 1. The
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Table 1: Performance metrics of the proposed ESN model and the baseline for the test scenario.

Model RMSE (bar) R2

Linear 1.04 0.90
ESN 0.68 0.95

proposed ESNmodel presented a 34% lower RMSE and a 5% closer to unity R2, showing that the choice of a nonlinear
model results in significant improvements for the nonlinear estimation of a discharge pressure model on refrigeration
compressor test stands.

5. CONCLUSIONS

In this paper a nonlinear ESN network model, with its parameters estimated online using the recursive least squares
method, was proposed to identify the discharge pressure dynamics in a refrigeration compressor test stand. The pro-
posed model comprises an ESN network, characterized by an architecture in which only its reservoir readout layer
weights are adjusted. This structure can be exploited to identify nonlinear systems in an online manner, as the network
can be efficiently trained using the least squares method.

The proposed nonlinear ESN model was evaluated considering a real refrigeration compressor test stand and it was
used to identify the discharge pressure dynamics. The ESNmodel was estimated online during the test stand operation,
considering a scenario in which random changes in the discharge valve voltage were made. A model linear in its
parameters was used as the baseline, with its parameters estimated with a similar recursive least squares method. In
both cases, no prior information regarding the system dynamics is necessary.

The evaluation was conducted using a test scenario in which the model that was obtained in the last estimation scenario
time instant was tested under all typical test stand operating conditions. The results showed that the proposed approach
outperformed the baseline, with a 34% lower RSME. Graphical inspection showed that the proposed ESN was able to
better model the nonlinear gain of the discharge pressure, presenting less error than the linear baseline. These results
show that the use of nonlinear models to identify refrigeration compressor test stands brings improvements in the
modeling precision, and have potential to improve control performance when applying model based control solutions,
such as nonlinear model based predictive controllers.

NOMENCLATURE

A total number of samples (–)
e(k) estimation error (–)
P(k) covariance matrix (–)
u1(t) suction valve voltage (V)
u2(t) discharge valve voltage (V)
u(k) ESN input array (–)
x(k) reservoir state array (–)
y1(t) suction pressure (bar)
y2(t) discharge pressure (bar)
y(k) ESN output array (–)
W weight matrix (–)
ρ spectral radius (–)
φ(k) adaptive forgetting factor (–)
Subscript
in input
l linear
m number of outputs
n number of inputs
out output
r reservoir size
res reservoir
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