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ABSTRACT

Accurate compressor performance prediction is a key tool in heat pump and refrigeration system modeling and design.
Correlations applicable to a variety of refrigerant types are rare and would be valuable for multi-refrigerant screenings
and mixture development. This work presents correlations for isentropic and volumetric efficiency and heat losses of
reciprocating compressors for synthetic and hydrocarbon refrigerants and mixtures. A refrigerant-specific toggle term
was included in the isentropic efficiency correlation to distinguish between refrigerant types. Equations were fitted to
365 experimental data points across two compressors, 7 pure fluids and 10 mixtures thereof, with pressure ratios
ranging from 2 to 18, suction pressures from 50 to 750 kPa, isentropic efficiencies from 0.30 to 0.70, volumetric
efficiencies from 0.35 to 0.90, and heat losses from 0.1 to 0.65 of the compressor power draw. The overall isentropic
efficiency (referred to throughout the paper as simply “isentropic efficiency”) correlation has three input parameters
and predicts all data with an average deviation of 0.012. The volumetric efficiency correlation has only one input
parameter and predicts all data with 0.022 average absolute error. The heat loss correlation has two input parameters
and an average deviation of 0.034. All three correlations are valid over the entire experimental range for all
fluid/compressor combinations tested.

Keywords: compressor performance, correlations, synthetic, hydrocarbons
1. INTRODUCTION

Refrigerant mixtures are a key optimization variable in high-temperature heat pumps. For realistic screening studies,
the compressor as a key component must be accurately modeled for the range of considered refrigerants and mixtures.
Many previous studies have attempted to characterize compressor performance (e.g., volumetric efficiency
Nwor, Overall isentropic efficiency 7,;s, heat loss coefficient {.,) across operating conditions (e.g., suction and
discharge pressure, superheat), but only a few evaluate a variety of different refrigerants on the same compressor.
Table 1 shows an overview of previously developed correlations in the open literature, most of which are fitted to
specific refrigerants. Therefore, a screening study across refrigerants is not supported, indicating the need for an
equation which is adaptable or simply agnostic to the fluid (but validated for several). Only two studies in Table 1
propose correlations for both synthetic and natural refrigerants. Roskosch et al. (2017) achieved this by providing
refrigerant dependent coefficients which were validated also for fluids not included in the fitting procedure. Navarro-
Peris et al. (2013) involved six different compressors, one with two different refrigerants tested. However, coefficients
must be refitted for each refrigerant, making the correlation unsuitable for a multi-refrigerant screening.

Many approaches based on artificial neural networks, including Belman-Flores et al. (2015), Penzet al. (2012), Sanaye
et al. (2011), and Yu et al. (2007), have achieved lower error for specific conditions (one compressor and one
refrigerant). Still, the model's complexity and specificity make them unsuitable for this application.

The present study builds on Brendel et al. (2023) (with 200 data points) but is now based on an enlarged experimental
dataset of 365 data points across two compressors, 7 pure fluids and 10 mixtures. Therefore, the correlations can now
cover synthetic and hydrocarbon refrigerants.
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Table 1: Previous correlations and their performance metrics

1313 Page 2

ublished in the literature.

Literature |7,;; error |m,,; error |Data | Number of Number of |1, inputs, |1,,; inputs,| Notes

reference | (relative) | (relative) |points | compressors | fluids* coefficients | coefficients

Navarro et | Max 5% Max 5% |85 4 reciprocating | 1 refrigerant | 10, - -

al. (2007a)

Navarro et | Max 5% Max 5% |- 4 reciprocating | 1 synthetic 3,- - Refit for each

al. (2007b) 1 natural refrigerant

Navarro- Max 5% Max 100 1 scroll 1 synthetic 3,8 5, - Builds on

Peris et al. approx. 7% 5 reciprocating | 1 natural Pierre’s

(2013) correlations
(Pierre, 1982)

Roskosch et| Avg 3% Avg2.3% |63 1 reciprocating |2 synthetic 8,4 8,4

al. (2017) | Max 6% Max 6% 4 natural

Lumpkin et | Max 0.2% |Max 0.1% |43 1 reciprocating | 1 synthetic 2,10 - Explored

al. (2018) injection types,
., correlation
with 11% error

Brendel et | Avg 3.0% |Avg 3.0% |200 1 reciprocating |29 synthetic |2, 6 1,2 Expanded for

al. (2023) |Max21% |Max 14% this study

2. AVAILABLE EXPERIMENTAL DATA

2.1 Experimental Test Bench

Figure 1 illustrates the schematic of the laboratory high-temperature heat pump used to generate three distinct datasets.
A mass flow meter was installed in the liquid line, and an oil separator was directly downstream of the compressor.
Thermocouples and pressure transducers were installed close to the compressor ports in insulated connecting pipes,
but the compressor itself was not insulated. The compressor suction and discharge pressures were controlled by
changing the heat sink and source temperature. The superheat was controlled using the expansion valve. The internal
heat exchanger (IHX) was deactivated for all tests using a three-way valve. More detailed descriptions of the test setup
can be found in Brendel et al. (2023) and Arpagaus et al. (2018).

Tests were conducted with two reciprocating compressors, called compressors A and B in the following. The
compressors had similar outer dimensions and swept volumes of 0.158 and 0.153 liters, respectively. Tests with
synthetic refrigerants were conducted with the polyester oil Reniso Triton SE 170, while tests with hydrocarbon
refrigerant were performed with the polyalkylene glycol oil Reniso LPG 150. More information can be found in Fuchs
(2023a) and Fuchs (2023b).
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Figure 1: Schematic of experimental test setup.
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2.2 Refrigerants

The refrigerants in this study can be classified into two families: hydrocarbon and synthetic. These refrigerant types
perform differently, largely due to differing densities at equal pressures: the hydrocarbon refrigerants studied here
have molecular masses in the range of 44 to 72 g/mol, less than half the values of synthetics at 102 to 164 g/mol
(except R32, which was used at <20% mass concentration only).

2.3 Database
The data is categorized into three datasets.
- Dataset 1 is the dataset used in Brendel et al. (2023), consisting of synthetic refrigerants tested with
compressor A.
- Dataset 2 consists of synthetic refrigerants tested with compressor B.
- Dataset 3 consists of hydrocarbon refrigerants tested on compressor B.

The datasets are shown in Table 2 with ranges of operating conditions for each relevant variable. From 368 total data
points, three were removed: two for having suction pressures above 750 kPa and one for a pressure ratio (P,) of 21,
leaving the new maximum P, at 18. Each steady-state data point was averaged over 10 minutes of operation. For 60
data points, all measurements were steady except the discharge temperature. These data points were excluded from
the design and evaluation of the heat loss correlation but were still used for isentropic and volumetric efficiency
correlations. Table 3 shows the specific refrigerants and mixtures tested in each dataset, with the numbers on the right
indicating how many unique mixture ratios were tested.

Table 2: Evaluated datasets with ranges of important parameters.

Dataset | Number of P, P, T, y d, Nois Nvol Ceo
data points [kPa] [-] [°C] K] | [kg/m’] [-] [-] [-]

1 256 41-745 2-18 3-104 5-52 3-35 0.30-0.68 | 0.37-0.91 0.09-0.62

2 48 156-675 3-10 49-86 16-52 8-27 0.57-0.66 | 0.63-0.84 | 0.13-0.36

3 61 143-701 2-12 19-87 10-53 3-13 0.33-0.68 | 0.47-0.89 | 0.11-0.29

Table 3: Tested refrigerants. The right column indicates the number of unique mass compositions tested.
Dataset 1

R-1336mzz(Z2)

R-1233zd(E)

R-1224yd(Z)

R-1234yf
R-1234yf/1336mzz(Z)
R-1234yf/1233zd(E)
R-32/1224yd(Z)
R-32/1224yd(Z)/1336mzz(Z)
R-32/1234y1/1224yd(Z)
R-32/1234y1/1336mzz(Z)
Dataset 2

R-1224yd(Z)

R-134a

R-1234y1/1224yd(Z) 3
R-1234y{/1224yd(Z)/1336mzz(Z) 2
Dataset 3
R-600
R-290/600 11
R-290/601 8

N |00 |— [ W[y
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3. CORRELATION FOR ISENTROPIC EFFICIENCY

3.1 Correlation Development
The overall isentropic efficiency 7, is defined as the isentropic compression power for the measured mass flow rate
m(h,s — h,) devided by the compressor power draw IW:

m - (hys — hy)
Nois = TS (D
The correlation developed by Brendel et al. (2023), Equation 2 below (hereafter referred to as the “London
Correlation”) served as the starting point for this investigation because it was able to predict efficiencies for a large
number of different synthetic refrigerants and their mixtures.

0.6

TE a9 @

Nois = Qo

P. represents the pressure ratio and P, the suction pressure. The coefficient a, sets an upper bound on the efficiency
while the other terms subtract from this value. The second term defines the behavior for low pressure ratios, and the
third term is for high pressure ratios. Higher suction pressures increase the efficiency as experimentally determined.
This equation was originally fitted to Dataset 1 and was tested for Dataset 2 and 3 as they became available. It showed
good results for Dataset 2, but significant errors occurred for Dataset 3 especially at high pressure ratios.

Thus, a “toggle term” R, was introduced to account for the refrigerant type, taking on a different value for each
refrigerant family (syn: synthetic, HC: hydrocarbon). This term replaced 1.8 in the London correlation to correct for
the high-PB. outliers. This change causes steep drop-offs (see blue lines in Figure 2). Unfortunately, the trend is based
on only a few data points. Another idea was using the suction density instead of the suction pressure in the denominator
of the second term and moving R, in place of London’s a,, but the maximum and average errors of the correlation
could not be improved. Moreover, unlike suction density, suction pressure is a refrigerant-independent property
making it easier to apply in some models.

The suction superheat T, was identified in Figure 3 as a relevant input not included in the London equation. Thus,
the linear correction term a5 - Ty, was added to the proposed correlation, reducing errors by about half. Because the
a, term of the London equation is orders of magnitude below the value of P. and increased the uncertainty of the
coefficient solver, it was removed with no effect on the average and maximum errors. A static offset is visible for
compressor B with synthetics, but it is small and not present for compressor B with hydrocarbons, so it was not
addressed. Hence, the final form of the proposed correlation is:

a;

a4Ps
Pr

Nois = Ao — —az- PrRx +a;- T, (3)

The values of the coefficients in this equation are shown in Table 4, along with the coefficients for later correlations.
This equation was fitted for data with suction pressures in a range of 50 to 750 kPa, a pressure ratio range of 2 to 18
for synthetic and 2 to 15 for hydrocarbon refrigerants, and a suction superheat of 5 to 55 K. The trends of the correlation
at 15 K superheat for fixed pressures of 150, 300, and 600 kPa are shown in Figure 2. An additional line (dashed) is
plotted with 35 K superheat to show its effect. It should be noted that hydrocarbons in experimental data peak slightly
higher than synthetics for each fixed-pressure curve, but the equation could not model this behavior without another
refrigerant-specific term.

Table 4: Coefficients for proposed correlations.

Overall isentropic Volumetric Heat loss
efficiency efficiency coefficient
Equation Equation (3) Equation (5) Equation (7)
Coefficient a a; a, as a, Rgyn | Ruc b, b, Co (o)
[-] [-] [1 | KXK' | [kPa']| [] | [] [-] [-] [-] [-]
Value 0.6462| 0.5798| 0.0012| 0.0012| 0.0077| 1.712| 2.047| 0.0824 | 0.7277| 0.1062 | 0.6463
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Isentropic Efficiency Curves for Select Pressures
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Figure 3: n,;, correlation error vs. suction superheat temperature

3.2 Correlation Performance

The performance of all investigated correlation equations was evaluated mainly by average and maximum deviation
due to their intuitive meaning and relevance to system modeling applications. Figure 4 compares the performance of
the London correlation (left) to the proposed correlation (right), with upper charts illustrating absolute error values as
a function of the data point index number (chronological order of testing) and lower charts showing predicted

efficiency as a function of measured efficiency with 72 values included.

The London correlation predicts hydrocarbons particularly poorly. The proposed correlation corrects this by reducing

the average error from 0.018 to 0.012 and the maximum error from 0.105

to 0.058. The first row of Table 5 contains

the average and maximum absolute error values for the proposed isentropic efficiency correlation for all three datasets

and each dataset.
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Proposed Correlation
Overall Isentropic Efficiency
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Figure 4: Absolute error of 1, for the London correlation and the proposed correlation

Table 5: Absolute errors of the proposed correlations for all data and separate datasets. The first number in each cell
indicates the average absolute error, and the number in parentheses shows the maximum error.

All data Dataset 1 Dataset 2 Dataset 3
Overall isentropic efficiency 0.012 (0.058) 0.009 (0.041) 0.027 (0.042) 0.013 (0.058)
Volumetric efficiency 0.022 (0.079) 0.012 (0.058) 0.025 (0.038) 0.013 (0.054)
Heat Loss 0.036 (0.238) 0.037 (0.238) 0.033 (0.075) 0.038 (0.081)

4. CORRELATION FOR VOLUMETRIC EFFICIENCY

The volumetric efficiency 1,,,; is defined as the actual mass flow rate over the theoretical one given the suction density
p, the compressor frequency f and the swept volume of all cylinders combined Vg, ¢y :

Nvor =

m

p- f ' szept

4

Despite being fitted only for Dataset 1, the London correlation for volumetric efficiency performs well for all datasets.
There are some outliers but no clear dependencies. Refitting was deemed unnecessary as the decrease in the average
error is small (0.001), and the maximum error increases by 0.008. The performance of the London volumetric
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efficiency equation (Equation 4) on the new datasets is graphed in Figure 5. It is repeated here for completeness, and
the coefficients are presented in Table 4:

Nyor =1 — by * (Pr - 1)b1 (5)

This equation was fitted for pressure ratios from 2 to 18, with overall and per-dataset average (and maximum) absolute
errors detailed in Table 5.
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Figure 5: Volumetric efficiency ,,, performance for all datasets

5. CORRELATION FOR HEAT LOSS

5.1 Correlation Development
The heat loss factor (., is defined as the heat losses Q,, as calculated from an energy balance relative to the power
draw of the compressor W:

_ Qo _ W —m-(h, —hy)

w o W ©)

(CO

As mentioned in Section 2.3, some data points with unsteady discharge temperatures were not considered for this
section of the investigation. Even after filtering, initial evaluations did not reveal strong correlations between any
singular independent variable and heat loss, so more complex methods were employed. After filtering by suction
temperature, some linear trends appeared relative to suction pressure.

Machine learning symbolic regression genetic algorithm gplearn (Stephens, 2016) was used to identify candidate
equation forms and important variables. Many candidate equations were generated with varying complexity,
performance, and physical sensibility. To narrow the field, the algorithm was tuned to minimize input parameters and
total terms in the equations in addition to its default minimization of mean absolute error. Manually, equations with
large growth/decay trends just outside the experimental range were pruned, as well as those with few major outliers.
Chiefly, this investigation confirmed that suction temperature and pressure were the best predictors of heat loss for
this dataset, usually with pressure in the numerator and temperature in the denominator of a fraction. Exploration of
error correction terms for equations with these two parameters suggested pressure ratio as a possible additional input.
Still, no equation forms were developed with lower mean or maximum errors than the final equation. To cap output
values at 1, the equation was constrained to the form 1 — (1/x), and after coefficients were rearranged, the final
proposed equation took the following form:

Co

oo = 1—T1(%) (7)
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T, is the suction temperature in °C, and the equation was fitted for values from 5 to 105 °C and suction pressures from
50 to 750 kPa. As with the previous correlations, its coefficient values are found in Table 4 and its error metrics in
Table 5. In Figure 6, five curves of heat loss vs suction temperature are color-coded by suction pressure.
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Figure 6: Heat loss (., correlation representations in 2D (left) and 3D (right).

5.2 Correlation Performance
Figure 7 shows the absolute errors of the heat loss correlation vs. data point index number (left) and the measured
value vs. predicted value (right). It shows that most points fall within £20% despite the strongest outliers reaching a
53% maximum deviation.
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Figure 7: Absolute error of heat loss (., for each dataset

6. CONCLUSIONS

This study compared and correlated data across two compressors and various refrigerants to correlate overall isentropic
and volumetric efficiencies and the heat loss coefficient of a compressor with simple-to-use equations with the fewest
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possible input terms. The total number of data points for the final correlation equation fitting was 365, including 7
pure refrigerants and 49 total ratios of 10 different mixtures. The overall isentropic efficiency equation has 6
coefficients and 3 inputs (i.e., suction pressure, pressure ratio, and suction superheat). It was fitted with data
considering suction pressures of 50 to 750 kPa, pressure ratios of 2 to 18 for synthetic and 2 to 15 for hydrocarbon
refrigerants, and a suction superheat of 5 to 55 K. The equation requires a refrigerant “toggle term” for good results
with synthetic and hydrocarbon (natural) refrigerants, predicting across all datasets with 0.012 average deviation and
0.058 maximum deviation. The volumetric efficiency correlation developed by Brendel et al. (2023) was verified for
the additional refrigerants and compressor, showing a mean absolute error of 0.022 with a maximum of 0.079 for
pressure ratios from 2 to 18. A heat loss correlation was developed with 2 input parameters (i.e., 5 to 105 °C suction
temperature and 50 to 750 kPa suction pressure) and 2 coefficients, approximating the heat loss coefficient with 0.036
mean and 0.238 maximum errors. The refrigerant “toggle term” in the equation for the isentropic efficiency alludes to
the possibility of building one general correlation for yet more refrigerants or compressor types.

NOMENCLATURE
P Pressure (kPa or unitless for Py)
d Density (kg/m®)
T Temperature O
a,b,c,R Coefficients (varying)
w Power draw (kW)
m Mass flow rate kg/s
|4 Volume (m?)
n,¢ Performance metrics ()
Subscript
T ratio
s suction
2s statepoint assuming an isentropic process
d discharge
sh superheat
number coefficient numbering
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the Swiss National Science Foundation and Innosuisse
(Bridge Discovery project with grant number 203645). In addition, the financial support of the Swiss Federal Office
of Energy (SFOE) as part of the SWEET (Swiss Energy research for the Energy Transition) project DeCarbCH
(www.sweet-decarb.ch, project number SI/502260) is gratefully acknowledged.

REFERENCES

Arpagaus, C., Bless, F., Uhlmann, M., Biichel, E., & Frei, S. (2018). High temperature heat pump using HFO and
HCFO refrigerants—System design, simulation, and first experimental results. Purdue Conferences, West
Lafayette, IN, USA. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2874&context=iracc

Belman-Flores, J. M., Ledesma, S., Barroso-Maldonado, J. M., & Navarro-Esbri, J. (2015). A comparison between
the modeling of a reciprocating compressor using artificial neural network and physical model. International
Journal of Refrigeration, 59, 144—156. https://doi.org/10.1016/].ijrefrig.2015.07.017

Brendel, L. P. M., Bernal, S. N., Roskosch, D., Arpagaus, C., & Bertsch, S. S. (2023). Compressor performance for
varying compositions of high-glide mixtures R1233zd(E)/R1234yf and RI1336mzz(Z)/R1234yf. 13th
International Conference on Compressors and their Systems, London, England, ICCS 2023. Springer
Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-42663-6_60

27" International Compressor Engineering Conference at Purdue, July 15 — 18, 2024


http://www.sweet-decarb.ch/
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2874&context=iracc
https://doi.org/10.1016/j.ijrefrig.2015.07.017
https://doi.org/10.1007/978-3-031-42663-6_60

1313 Page 10

Fuchs, 2023a. Reniso Triton SEI70 [WWW Document]. Fuchs Lubr. Ger. GmbH. URL
https://www.fuchs.com/de/en/product/product/148791-RENISO-TRITON-SE-170/

Fuchs, 2023b. Reniso Triton LPG150 [WWW Document]. Fuchs Lubr. Ger. GmbH. URL
https://www.fuchs.com/de/en/product/product/151011-RENISO-LPG-150/

Lumpkin, D. R., Bahman, A. M., & Groll, E. A. (2018). Two-phase injected and vapor-injected compression:
Experimental results and mapping correlation for a R-407C scroll compressor. International Journal of
Refrigeration, 86, 449-462. https://doi.org/10.1016/j.ijrefrig.2017.11.009

Navarro, E., Granryd, E., Urchueguia, J. F., & Corberan, J. M. (2007a). A phenomenological model for analyzing
reciprocating ~ compressors.  International ~ Journal — of  Refrigeration,  30(7),  1254-1265.
https://doi.org/10.1016/j.ijrefrig.2007.02.006

Navarro, E., Urchueguia, J. F., Corberan, J. M., & Granryd, E. (2007b). Performance analysis of a series of Hermetic
reciprocating compressors working with R290 (propane) and R407C. International Journal of Refrigeration,
30(7), 1244—1253. https://doi.org/10.1016/].ijrefrig.2007.02.004

Navarro-Peris, E., Corberan, J. M., Falco, L., & Martinez-Galvan, 1. O. (2013). New non-dimensional performance
parameters for the characterization of Refrigeration Compressors. International Journal of Refrigeration,
36(7), 1951-1964. https://doi.org/10.1016/].ijrefrig.2013.07.007

Penz, C. A., Flesch, C. A., Nassar, S. M., Flesch, R. C. C., & de Oliveira, M. A. (2012). Fuzzy—Bayesian Network for
Refrigeration Compressor Performance Prediction and test time reduction. Expert Systems with Applications,
39(4), 4268—4273. https://doi.org/10.1016/j.eswa.2011.09.10

Pierre, B.: Kylteknik, Allmadn Kurs. Inst. Mekanisk Vi Rmeteori Och Kylteknik, KTH, Stockholm (1982) (in
Swedish)

Roskosch, D., Venzik, V., & Atakan, B. (2017). Thermodynamic model for reciprocating compressors with the focus
on fluid dependent efficiencies. [International Journal of  Refrigeration, 84, 104-116.
https://doi.org/10.1016/].ijrefrig.2017.08.011

Sanaye, S., Dehghandokht, M., Mohammadbeigi, H., & Bahrami, S. (2011). Modeling of rotary vane compressor
applying artificial neural network. [International Journal of Refrigeration, 34(3), 764-772.
https://doi.org/10.1016/j.ijrefrig.2010.12.007

Stephens, T. (2016). Welcome to  gplearn’s  documentation! gplearn 0.4.2  documentation.
https://gplearn.readthedocs.io/en/stable/index.html

Yu, Y., Chen, L., Sun, F., & Wu, C. (2007). Neural-network based analysis and prediction of a compressor’s
characteristic performance map. Applied Energy, 84(1), 48-55.
https://doi.org/10.1016/j.apenergy.2006.04.005

27" International Compressor Engineering Conference at Purdue, July 15 — 18, 2024


https://www.fuchs.com/de/en/product/product/148791-RENISO-TRITON-SE-170/
https://www.fuchs.com/de/en/product/product/151011-RENISO-LPG-150/
https://doi.org/10.1016/j.ijrefrig.2017.11.009
https://doi.org/10.1016/j.ijrefrig.2007.02.006
https://doi.org/10.1016/j.ijrefrig.2007.02.004
https://doi.org/10.1016/j.ijrefrig.2013.07.007
https://doi.org/10.1016/j.eswa.2011.09.10
https://doi.org/10.1016/j.ijrefrig.2017.08.011
https://doi.org/10.1016/j.ijrefrig.2010.12.007
https://gplearn.readthedocs.io/en/stable/index.html
https://doi.org/10.1016/j.apenergy.2006.04.005

