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ABSTRACT

A diaphragm pump is a reciprocating positive displacement pump. It works according to the principle that a volume
(working chamber) is periodically increased and decreased by a diaphragm. Due to this, a medium is sucked in and
pushed out of the working chamber. Valves are used to prescribe the direction of flow and prevent back flow. The
valves open and close automatically depending on the flow values or existing pressure differences. The diaphragm
and, in many cases, the valves are made of a material which is capable of large reversible deformations such as
elastomers (i. e. rubber). Such a material is necessary due to the diaphragm being stretched and compressed during its
reciprocating movement. In addition, the flow domain is sealed off from the environment (this does not mean the
sealing of the working chamber from the pressure or suction channels, but rather the prevention of leakage from the
pump) by squeezing defined sealing surfaces on the diaphragm and the valves.

Numerical simulations with FEM are used to gain a deeper understanding of the movement, the strains and stresses
that occur in the elastomeric part during operation. To achieve this, an adequate material model must first be created.
A material model for elastomers differs substantially from a material model for steel, which in its simplest form
consists only of a Young's modulus and a Poisson’s ratio. Elastomeric materials show a behavior that is nonlinear
elastic (hyperelastic) and time dependent (viscoelastic).

The aim of this paper is to present two methods for measuring the nonlinear stress-strain relationship of EPDM with
large strains, which is also affected by temperature and the strain rate at which the material is stressed. Firstly, a
hyperelastic characterization method at low strain rates with dynamical mechanical analysis is introduced. Secondly,
an advanced method is described that enables the examination of hyperelastic material properties at high strain rates.
Furthermore, two viscoelastic material models are calibrated on the base of these measurements, the first is a Prony
series approach and the second uses a Bergstrom-Boyce model.

Finally, simulation results are compared with measurements. Measured stress-strain curves of a cyclic simple tension
experiment are available for this purpose. This experiment is reproduced numerically. Comparing the results provides
a first assessment of the material models.

1. INTRODUCTION

FEM simulations enable a deeper understanding of how elastic parts in a diaphragm pump work. The large elastic
deformations of the components are of particular interest here. A material model is required for a reliable and correct
simulation of the elastic components in a diaphragm pump, which are usually made of elastomeric materials. The
material behavior of elastomers is generally described as hyperelastic with a time-dependent viscous component. In
addition, these materials also show a temperature dependency as well as permanent deformations upon initial loading.

27" International Compressor Engineering Conference at Purdue, July 15 — 18, 2024



1155, Page 2

A review of different approaches for describing the material behavior of elastomers is presented in the next section.
Then, appropriate material characterization is performed in order to fit and compare two models chosen with the
knowledge provided in this review.

2. MATERIAL MODELS FOR ELASTOMERS

Purely elastic material behavior is described with nonlinear hyperelasticity models. Phenomena such as viscoelasticity,
stress-softening or damage such as the Mullins effect (Mullins, 1969) are neglected. Only the pure nonlinear behavior
with large strains is considered. The material is also assumed to be incompressible and isotropic. In the literature,
these models are divided into three different types, all of which are a description of the strain-energy-density. Mooney
(1940), Rivlin (1948) and Ogden (1972) developed phenomenological models. Yeoh (1990) and Gent (1996) derived
models based on measurements. The last type of models is physics-based. Models like the 8-chain model by Arruda
and Boyce (1993), as well as the neo-Hookean model by Treloar (1943) and Rivlin (1948) belong to this category.

The few material parameters that are present in all the mentioned models can be determined by tensile tests. In the
frequently cited source Treloar (1944), uniaxial tension, pure shear and biaxial tension tests are carried out. This set
of experiments remains used and recommended in more recent publications as well (Gent, 2012, Bergstrém, 2015 and
Eberlein, 2019). Material models with parameters that are only determined by a single test, such as uniaxial tension,
show good agreement with the respective test. However, the models fail most of the time when predicting other forms
of deformation, especially if the material show a strong dependence on the second invariant of the right Cauchy-Green
tensor.

Markmann and Verron (2006) examine 20 hyperelastic material models of the three types presented and evaluate how
well they can reproduce different loading conditions. They describe that the Ogden model (Ogden, 1972) was able to
reproduce all loading conditions well. However, they also note that models with 6 parameters require more effort to
determine their right value. The Gent (1996) model with fewer parameters also shows good agreement with
corresponding experimental data with small deviations when predicting the biaxial test. For strains up to 150 %, they
recommend the Mooney-Rivlin or neo-Hookean model for their efficiency.

with the damping constant 7 can be used. In the following, only calculations for

Linear viscoelastic material models describe the time-dependent material behavior. to
This is, for example, a stress relief of a tensile specimen at constant strain P==1
(relaxation) or creep of the material at constant load. To understand the material | |
model, a model analogy consisting of a spring with the stiffness E and a damper Egs El: E;
:
|

the relaxation are presented. Figure 1 shows a Maxwell element in the dashed box 1 1'\_T i
with spring and damper in series. The procedure is very similar for creep. It is also LI
possible to carry out a conversion from relaxation to creep and vice versa. Further
explanations can be found in the literature which is mentioned at the end of this
section. Both elements are connected in series and are subjected to strain. The
stress, however, is the same in both elements. This results in the following
differential equation:

Figure 1: Maxwell model and
the extension with several
spring-damper elements

'—1'+1 1
E—EO' no. (8]

The following analytical solution can be found using the exponential function as the starting function:
_t n
o(t) = e(0)Ee Twitht = T 2

The first parameter on the right-hand side represents a constant initial strain at time 0. A generalized Maxwell model
is used for an extended description. For this purpose, several spring-damper elements are connected in parallel
(Figure 1). In the first branch, however, only one spring with the stiffness E, without damper is used to represent the
time-independent material behavior. Equation 2 then takes the form:
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o(t) = Eoe(0) + Z €(0)Ee . @)

By applying Prony series to this approach, an arbitrary functlon for the relaxation can be defined. So far, only one
strain at time t = 0 is considered. An integral is introduced for arbitrary and continuous strains:

o(t) = Eye(t) +Z f - Sae(s) ds. 4)

Equation 4 can also be stated in the frequency domain instead of the time domain. The excitation is now a sinusoidal
strain e(t) = €y + Aesin (wt). Inserting this into 4 with N = 1 results in:

t _Ei(t-s)
o(t) = Ey€y + Eplesin (wt) + wAeElf e M coswtds. (5)
0

By rearranging the equation and calculating the integral, it can now be written as follows:

2
w2E1 wEl i
2

o+ (Bin,) o+ (/)

In the linear viscoelastic model, the stresses due to strains at further time stepst > 0 just add up. This is known as
the Boltzmann superposition. It can also be seen in 2 and 3 that the shape of the stress relaxation is qualitatively the
same due to the exponential function. Only a scaling with the occurring strains is carried out. A linear viscoelastic
model therefore does not necessarily have a linear stress-strain relationship. Instead, the linearity relates to the
superposition and the scalability. A detailed description of this theory can be found in the books by Findley, Lai and
Onaran (1976) or Christensen (1982).

a(t) = Eqeg + Aes | Ep + sinwt + cos wt (6)

If the assumption of superposition and scalability does not apply to the material, the viscoelastic material behavior is
not linear. Nonlinear viscoelasticity is discussed in detail by Noll (1958) and Truesdell and Noll (1965). Wineman
(2009) summarizes the progress in modeling nonlinear viscoelastic materials, while Ward and Sweeney (2013) divide
the nonlinear models into three approaches: engineering approach, rheological approach and molecular approach. In
the engineering approach, empirical models are derived from a manageable number of measurements. The
applicability and transfer of these approaches are limited. The rheological approach contains most of the nonlinear
models. Schapery’s model (1969) is widely used. A model by Leaderman (1943), later modified by Findley and Lai
(1967), is also mentioned in the literature. Pipkin and Rogers (1968) then present a more general model. All four
models describe the nonlinear viscoelasticity with a single integral, like the approach for the linear viscoelastic models
in (4). Here, however, the function for the relaxation or creep is dependent on time and the strains or stresses. The last
of the class of single integral models is the BKZ model by Bernstein, Kearsley and Zapas (1963). They primarily
developed a model for elastic fluids which can also be applied to solids. Finally, the more complex and therefore less
used multiple-integral model by Green and Rivlin (1957) is mentioned. In the molecular approach, Halsey et al. (1945)
develop a model based on the movement of molecular chains. In addition, they defined an activation energy and an
activation volume for the time-dependent behavior. The damper in the model analogy is only active when a threshold
is exceeded.

One of the latest approaches of modeling the time-dependent material behavior of elastomers is made by Bergstrom
and Boyce (1998). Their model is micromechanically inspired from the relaxation of a single entangled chain in a
polymer gel matrix. This model can also be counted among the nonlinear viscoelastic models, but it does not use an
integral for calculating the time dependent stress or strain behavior. This model consistently uses the 8-chain model
of Arruda and Boyce (1993) for the elastic material behavior. For determining the parameters of such models,
experimental stress and strain curves at different strain rates, especially at high strain rates and large strains, are
necessary. Such strain rates often exceed the capabilities of standard testing machines. Testing at high strain rates is
commonly done using a Kolsky or Split-Hopkinson Bar (SHPB, Miyambo et al., 2023). However, the SHPB requires
substantial adjustments for polymers and elastomers (Yoon et al., 2016 and Cheng et al., 1999) and may suffer from
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a high signal noise and a low transmitted signal (Brown, 2018). An increasingly popular alternative method for
performing mechanical test at high strains on softer materials involves a so-called Drop Tower (typically >50 /s up to
500 /s in tension and 2’000 /s in compression). The Drop Tower offers a simpler approach better suited for testing
softer materials. Its operating mechanism consists of a heavy sled falling along two vertical pillars, either equipped
with a punch and impacting a sample (compression) or dragging a part of the sample holder after impact to pull on the
sample (tension). A more detailed description of this method is provided by Teller (2019).

In addition to the time-dependent material behavior, the temperature-dependent behavior is also described in the
literature (Gent 2001). Considering the spring-damper model analogy it is understandable that the viscosity of the
damper naturally also depends on the temperature. The glass transition temperature is a characteristic parameter for
elastomers. Below the glass transition temperature (T << T,), elastomers are glassy, brittle and exhibit a relatively
high stiffness, while at temperatures above the glass transition temperature (T >> T,) elastomers show a rubber-like
behavior which is characterized by a much lower stiffness. If the damper from the model analogy is used again, it
quickly becomes clear that temperature and time are superimposed in the viscoelastic behavior. Several authors,
among which Gent (2001) and Ferry (1980) also describe this at the molecular level. The correlation of time and
temperature is described by the time-temperature-superposition principle. When all relaxation functions have the same
dependency on time, this also means that the shape of the relaxation functions is identical for all temperatures.
Therefore, the material is considered as a thermorheological simple material. This allows measurements of the material
behavior at different temperatures over a limited range of strain rates to be combined into an overall curve at a
reference temperature to obtain a statement about the material behavior over a wide range of strain rates. Particularly
low strain rates sometimes take a very long time to converge into a result. On the other hand, particularly high strain
rates can sometimes only be measured with great technical effort. The shift of the master curve to a temperature other
than the reference temperature is described for elastomers by the Williams-Landel-Ferry (WLF) function.

In the following, experimental approaches for the characterization of EPDM (ethylene propylene diene monomer
rubber) are presented. Common to all approaches is, that the hyperelastic material properties are first determined. This
is based on the literature and the quasi-static measurements described by Treloar (1944). Two types of measurements
are then conducted to determine the viscoelastic material properties. First, a standardized dynamic mechanical analysis
(DMA) is performed assuming the time-temperature-superposition principle. This is a standard test for elastomers and
is described by Gent (2001) and Kraus et al. (2017). In addition, a drop tower is used to investigate high strain rates
and large strains. The obtained experimental data is then used to calculate parameters for the numerical material
models. In the simulation program Marc, a variety of hyperelastic material models can be selected. In this article, the
Mooney-Rivlin model is used for moderate strains, as recommended by Markmann and Verron (2006). In addition, a
linear viscoelastic material model capable of large deformations is used for the time-dependent material behavior. A
model by Simo (1987) is implemented in Marc for this purpose. The parameters of the Prony series are determined
from the DMA. Finally, the model parameters of the nonlinear viscoelastic model by Bergstrom and Boyce (1998) in
conjunction with the hyperelastic model by Arruda and Boyce (1993) are determined using the measurements from
the drop tower. The same approach was adopted by Eberlein et al. (2019) with thermoplastic polyurethanes using a
Three-Network-Model, an extension of the Bergstrom Model (Bergstrom and Bischoff, 2010). Bergstrom (2015) also
states that the parameters of this model can be determined with tests at high strain rates.

3. MEASUREMENTS

This section presents the experimental procedures used to obtain the data necessary to the calibration of the chosen
models. The experimental conditions to adequately characterize the viscoelastic behavior of the material must be
similar to the working conditions of the diaphragm pump. The pump operates at temperatures around 80 °C and strain
rates of around 50 /s are experienced by the diaphragm, which is replicated in the high strain rate measurements. The
quasi-static measurements for the hyperelastic part of the model are measured at room temperature. The influence of
higher temperatures and strain rates is taken into account by the DMA.

Data processing applied to raw data includes the isolation of the evaluation cycle for cyclical tests (i.e. discarding the

pre-conditioning for evaluation), as well as smoothing the raw data, eliminating experimental artifacts (Toe-In) and
homogenizing the number of data points for each measurement.
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3.1 Quasi-static mechanical characterization of EPDM

The main experimental parameters and sample characteristics are presented in Table 1. The quasi-static experiments
are performed with a custom-made biaxial testing machine, after principles shown in Eberlein and Holenstein (2018).
The force is measured by loadcells on each arm and the strain is measured with a video-extensometer that tracks
appropriately drawn contrast-marks. The testing for all three loading modes (Figure 2) is performed as a path-
controlled cycle with monotonous loading followed by a holding period and then monotonous unloading. This
evaluation cycle is preceded by three identical cycles to account for the Mullins Effect (Mullins, 1969). This is
necessary when the aim is to characterize a part in use, where the loading history of the material must be considered.

Table 1: Experimental parameters for the mechanical characterization of EPDM (quasi-static and high strain rate)

Experimental Uniaxial Pure shear Biaxial High strain rate High strain rate

parameters tension tension uniaxial tension uniaxial compression

N°samples | = --meemee- K 6 -

Shape Dogbone Rectangular Square Dogbone Cylinder (Stack of
(1IsO 37 (100 mm x 40 (100 mm x | (ISO 37 type 3) 6 discs with d=6mm)
Type 2) mm) 100 mm)

Thickness imm

Strain rate <0.005 /s <0.005 /s <0.005 /s 3x13/s;3x55/s 3x36/s;3x47 /s

Target strain 35% 35 % 35% na na

Loading scheme Load - hold 180s - unload Single loading ramp until failure

b e |
Figure 2: Mechanical testing: quasi-static testing configurations - a) uniaxial tension, b) equibiaxial tension and c)

pure shear

3.2 Mechanical characterization of EPDM at high strain rates

High strain rate and large strain mechanical testing is performed using a Drop Tower. Figure 3 shows the Drop Tower
in two different configurations for tension and compression experiments. The force is captured by a loadcell.
Displacement and strain are calculated by post processing using a DIC (digital image correlation) routine on images
recorded by a highspeed camera. To this end, a speckle pattern is applied onto the tension samples, whereas no
markings are required for compression samples (the displacement of the punch is tracked upon contact with the
sample). The material is tested in uniaxial tension and compression. Before testing, a pre-conditioning routine is
applied to the samples analogous to the quasi-static testing. The pre-conditioning is performed quasi-statically using
a universal testing machine. The experiments are performed for two target strain rates (10 /s and 50 /s). On the Drop
Tower, the strain rate is set by adjusting the falling height of the sled. This is especially challenging for strain rates at
the lower end of the Drop Tower’s spectrum applied to small samples, as the falling height must be set in relation to
the sample height (compression) or length (tension). Thus, the target strain rate of 10 /s could not be achieved for
compression tests.
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Tension set-up Compression set-up

punch

n /'Sa:nple on . ‘ .

platform

E

Sample holder

Figure 3: Schematic representation of the Drop Tower and the set-ups for tension and compression. Darker grey
elements with a wide arrow indicate the mobile components. Samples for the respective configurations are presented
right and left.

3.3 Dynamic Mechanical Analysis

The dynamic-mechanical analysis was carried out based on 1SO 6721-7 (forced vibration, non-resonant) under
dynamic torsional stress. The MCR 702 test device was used for the tests. The tests were carried out in a measuring
frequency range of 0.1 Hz to 10 Hz, with a constant strain of 0.05 % in a temperature range of -100°C to 100 °C. The
heating rate was 0.5 K/min. Beforehand, it was also assessed whether the material behaves like a linear viscoelastic
material within the strain range used. For each 1 K increase in the measurement sequence, the entire frequency range
was tested. As a result of the investigations, the real and loss components G’ and G of the complex shear modulus G*
were determined as a function of temperature and frequency. Rectangular strips with a width of 10 mm were punched
out for the measurements. A sample length of 44 mm was used for testing. After subtracting the fixtures, this results
in a measuring length of 30 mm.

3. RESULTS AND DATA EVALUATION

An application in the simulation program MARC is used 3 -
to fit the material model from the measurement results. 1 Co =0.602 MPa 2
After the measurement data is imported into the 1 Ci0=0431MPa &
simulation program, the unknown model parameters are 1
then determined by minimizing the least squares error
between the computed response and the measurements
using the differential evolution method (Storn, R. and
Price, K., 1997). In the hyperelastic material model, the
stress-strain behavior is obtained by deriving the strain-
energy-density function with respect to the stretches or
the invariants of the right Cauchy-Green tensor. As
already described, the Mooney-Rivlin model has two
parameters denoted by Cy; and C,,. The material model
is calibrated by adjusting the two parameters until the ——— ———————
deviation between the experimental data and curves 0 0.1 0.2 0.3
cqlculated from the material model is minimized. engineering strain
Figure 4 shows the measurement results and the
calculated response of the material model. It is easy to
see that the curves lie well on top of each other. The least
squares error is 1 %. The maximum absolute error of a x  measurement EB = = =numerical fit EB
single point in the ST test is 40 %. This can be found at +  measurement PS — - = numerical fit PS
an elongation < 10 %. For strains above 10 %, the
absolute error decreases to 5 %. Nevertheless, the fit of ~ Figure 4: Comparison of measured data (dotted line)
the measurement data is acceptable and adequate values and response of the material model (solid line) for
for Cy, and C;, are obtained. simple tension (ST), pure shear (PS) and equal biaxial
extension (EB)

N
w1

N
1
XN
X
X
+

engineering stress in MPa

x  measurement ST numerical fit ST
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The pre-factors in Equation 6 are referred to as the storage modulus G'(w) and loss modulus G"' (w):

W2E a)Elz/
6'(@) = By + ——— and 6" () = ———,.
w2+( 1/77) w2+( 1/77)

G'(w) describes the elastic material property and G’ (w) describes the damping. It is convenient to expand the storage
and loss moduli with Prony series. These parameters can then be calibrated to DMA measurements as it was done
above for the hyperelastic model. However, only small strains can be examined with the DMA. 22 terms are used for
the Prony series, as the master curve of the measurements extends over 22 decades (see Kraus et al., 2017). This means
that 22 E; and t; parameters must be determined. For assembling the master curve, -55 °C is selected as the reference
temperature, as this is where the greatest change in the storage modulus occurs. Figure 5 shows the storage and loss
master curves, which are assembled from the measured data with the frequency and temperature sweep. The stiffness
values in the lower and upper range are similar to the measurements of Qu et al. (2017). In addition, the graph shows
the master curves from the Prony series approximation of the measured data. The least squares error is 0.7 %. The
short-term stiffness with 1100 MPa is in the same range as the measurement results with 1150 MPa at high frequencies.
The long-term stiffness with 5 MPa is also in the range of the measurements with 5.5 MPa. The largest deviation is in
the peak of the loss modulus. Here the absolute deviation is 13 %. Compared to other authors such as Kraus et al.
(2017), this is a good numerical approximation of DMA measurements. Merging this Prony series with the
hyperelastic Mooney-Rivlin model allows the formulation of a linear viscoelastic model for large strains.

U]

1,200 1 200
] 180
1,000 A
§ 1 < 160
1 o
= 800 ] s 140
. =
g ] 2 120
3 600 - 5 100
o i o
£ ] 2 80
[<8) ]
= 400 - 2 60
S ] °
% 500 40
1 20
04 0
1E-10 1E-06 1E-02 1E+02 1E+06 1E-10 1E-06 1E-02 1E+02 1E+06
frequency in Hz frequncy in Hz
= measurement numerical fit ®  measurement == numerical fit

Figure 5: Comparison of the master curves from measurement and material model (storage modulus left and loss
modulus right)

The measurements from the drop tower are used to determine the model parameters for the Bergstrom Boyce model.
Here too, the first step is to import the tension and compression measurement curves at two strain rates into the
simulation program. For this model, the hyperelastic component is determined by two parameters of the Arruda-Boyce
formulation and five parameters determine the viscoelastic behavior (two for the nonlinear spring and three for the
nonlinear damper). All seven parameters are calculated in a joint fitting process. The least squares error is 0.44 % and
is therefore the lowest value achieved in this work. Figure 6 compares the measurement and simulation results. The
difference between the high and low strain rate measurements is small. This is due to the high temperature of the
measurement. In the compression, the curves are almost congruent. It is noticeable that the numerical fit reproduces
the measurement results very well. The slightly different slope of the curves at high and low strain rate is also
reproduced.
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0.2 0.3 04
engineering strain

x  measurement
linear visco-elastic model

— non-linear visco-elastic model

Figure 6: Comparison of measurement data from the drop tower and response of the material model (left) as well as
comparison of the simulation results of the single-element test with cyclic simple tension measurement data (right)

A linear viscoelastic and a nonlinear viscoelastic model are now
calibrated for large strains. Both models match well with the
respective experiments. Finally, a simple simulation is used to
investigate how well the models work. A stress-strain curve from
cyclic simple tension measurements is available. A sample is
stretched at a strain rate of 0.43 % per second up to 35 %, then
held for 180 s (the relaxation is clearly visible in Figure 6 right)
and finally released again at 0.43 % per second. This measurement
is reproduced in a simulation. For simplicity, only one element is
used for this, which is pulled axially. Figure 7 shows how the
element is fixed and where the tensile force is applied. Figure 6
compares the measurement and simulation results. It is easy to
observe that both models are capable of reproducing the material
behavior in the loading phase of the cycle. However, only the
nonlinear viscoelastic model is able to reproduce the stress
relaxation in the holding phase and the material behavior in the
unloading phase. In the linear viscoelastic model, the stress-strain
curves follow the same path during stretching and releasing. In this
model, stress relaxation takes place on a much smaller time scale.
Therefore, no stress relaxation can be recognized in the holding
phase, as the stress falls directly to the long-term value due to the
low strain rate while stretching.

T pull npwards
vz

¥z

Xyz

Figure 7: One element test
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CONCLUSIONS

This work offers a glimpse of the complexity and diversity of material models suitable for describing elastomers. The
development of such material models began in the middle of the last century and is still ongoing. Based on previous
research in this field, two approaches were chosen. A linear viscoelastic model with Prony series in combination with
a hyperelastic model as a well-established method and a nonlinear Bergstrom-Boyce model as one of the latest
developments in modeling viscoelastic material behavior were selected. Both models are implemented in the
simulation software used for this work. Suitable measurements were described and carried out to determine parameters
for both models. The calibration of the material models from the measurements worked reliably for each model and
the least squares error is low (< 1 %) for all calculations. The comparison of measurement and material model response
are in good agreement. However, checking the functionality of the material models when reproducing a cyclic tensile
test shows that only the nonlinear viscoelastic model is capable of adequately reproducing the stress-strain behavior.
A definitive assessment of which model will be used for further simulations of diaphragm movement cannot yet be
made. For this purpose, a test rig will be set up in a future study to measure the forces during a stroke movement of a
diaphragm pump. This test will then be reproduced numerically. The different material models will be assessed again
in a setting closer to their final application. These more complex simulations can then be used to assess potential
differences in numerical stability and computational efficiency between the material models.

NOMENCLATURE
Co1,Cio  Parameter material model N/m? o Stress N/m?
E Stiffness N/m? o Stress rate N/(m?5s)
€ Strain - s Time s
é Strain rate st t Time s
n Damping rate N s/m? T Temperature °C
G',G" Storage, Loss Modulus N/m? xyz Coordinates m
G* Complex Modulus N/m? w Frequency st
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