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ABSTRACT

Positive displacement compressors have recently begun to include vapor injection more frequently to adapt to energy
efficiency and decarbonization goals. High-accuracy models are crucial to predict the compressor performance for
rapid integration into HVAC&R systems. Most existing empirical models use more than 10 experimental data points
for accurate performance prediction, which can prove burdensome. This study aims to address the need for more
universal and versatile compressor mapping methodologies that do not require such intensive and expensive
experimental testing. An artificial neural network (ANN) based vapor-injected compressor performance mapping
approach is proposed. The proposed ANN model architecture comprises of one input layer, one output layer, and one
hidden layer. Input layer includes input parameters such as compressor speed, and suction, injection, and discharge
pressures while output layer includes output parameters such as evaporator mass flow rate, injection mass flow rate,
compressor power, and discharge temperature. In addition, this study qualifies the feasibility and reliability of the
proposed ANN model using Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). Data is
collected on vapor injected scroll and rotary compressors with R410A and R454B to train and test the model. The
model can predict the evaporator mass flow rate, injection mass flow rate, and compressor input power within 5%
MAPE, and discharge temperature with 5K MAE.

1. INTRODUCTION

Improving heat pump performance remains a significant challenge in refrigeration research. Refrigerant injection has
emerged as a key technical solution for air source heat pumps operating in regions with low ambient temperatures.
Within such systems, refrigerant injection is categorized into vapor and liquid subgroups. Vapor injection, in particular,
is employed to enhance cooling/heating capacity at the same compressor's stroke volume, presenting distinct
advantages over liquid refrigerant injection (Xu et al. 2011). This technique has been extensively explored in various
research published as a potential enhancement for air source heat pump systems.

Ma and Zhao, (2008) conducted an experimental investigation into the vapor injection heat pump cycle, incorporating
a flash tank coupled with a scroll compressor. Wang et al. (2009) explored the performance of a 11kW R410A heat
pump system employing a two-stage vapor injected scroll compressor through experimental means, thereby
establishing fundamental design and operational guidelines for heat pump systems. Xu et al. (2011) extensively
analyzed the performance disparity between R410A and R32 in a vapor-injected heat pump system utilizing a scroll
compressor. Bertsch and Groll (2008) undertook simulation, design, construction, and testing of an air source two-
stage heat pump system utilizing a scroll compressor under low ambient temperatures reaching -30 °C. Concurrently,
similar experimental investigations of vapor-injected compressors showed enhanced performance, highlighting the
significance of economization and vapor injection, as evidenced by a comprehensive review encompassing more than
50 papers (Yang et al. 2015, Cho et al., 2012, Khan and Bradshaw 2023).

Assessing the performance of vapor injection compressors constitutes a critical aspect of investigating the impact of
injection on the system. Presently, two primary methods are employed for modeling compressor performance:
efficiency methods based on the data collected from the experimental setups and detailed physics based models
(Tanveer et al. 2022; Tanveer and Bradshaw 2021). However, unlike conventional scroll compressors devoid of
injection, conventional efficiency models like the AHRI 10-coefficient model (Aute et al., 2015) are inadequate for
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representing the performance of injection scroll compressors due to the variable parameters associated with injected
refrigerants. Consequently, researchers have extensively explored and applied either black box models tailored for
vapor injection compressors (Tello-Oquendo et al., 2017) or comprehensive thermodynamic-principle-based models
in predicting the performance of compressors (Bradshaw et al. 2016; Orosz et al. 2014; Islam et al. 2021).

The black-box model is one of the modelling approaches, which does not rely on specific physical information
regarding compression and injection processes within the compressor. Instead, these models typically comprise
polynomial equations, where the coefficients are adjusted to match experimental data. The primary challenge
associated with black-box models is the issue of overfitting. Consequently, the model cannot predict the performance
for unseen data and performs poorly in case of extrapolation (Hu et al. 2020). Black box models for vapor injected
compressors in literature have been developed for scroll compressors (Tello-Oquendo et al. 2017b; Navarro et al.
2013, Khan and Bradshaw 2024b, Lumpkin et al. 2018).

In recent years, machine learning techniques and artificial intelligence methods have been utilized to accurately predict
the performance of components or systems in different fields (Ledesma et al., 2015). In addition to all black-box
models mentioned earlier, machine learning approaches such as artificial neural network (ANN), have been used for
systems and compressor performance prediction in HVAC systems (J. Ma et al. 2020, Yousafet al., 2022). With respect
to positive displacement machines, Artificial Neural Network (ANN), Adaptive Neuro Fuzzy Interference System
(ANFIS), and other hybrid approaches, e.g., ANN-PLS (Partial Least Squares), have been applied to characterize the
performance of compressors such as reciprocating (Gabel and Bradshaw 2023, Ledesma et al., 2015).

The efficacy of artificial intelligence (AI) methodologies, in terms of both accuracy and computational efficiency, has
been substantiated in the context of vapor compression systems. In the realm of compressor analysis, (Sanaye et al.
2011) developed an artificial neural network (ANN) approach tailored for a rotary vane compressor. This method
leveraged inputs such as refrigerant suction temperature and pressure, compressor rotation speed, and refrigerant
discharge pressure to predict the refrigerant mass flow rate and discharge temperature. Utilizing experimental data for
model development, the ANN demonstrated superior performance compared to a nonlinear regression model.
Similarly, Belman-Flores et al. (2015) employed ANN and physical models to estimate refrigerant mass flow rate,
discharge temperature, and energy consumption for a reciprocating compressor. Inputs encompassed suction pressure,
suction temperature, discharge pressure, and compressor rotation speed, with experimental data for R1234yf and
R134a utilized for model validation. Tian et al. (2015) introduced a hybrid model, namely ANN-PLS, to forecast
parameters such as volumetric efficiency, refrigerant mass flow rate, discharge temperature, and power consumption
for a variable scroll compressor operating with R134a. This approach integrated inputs including evaporation
temperature, condensing temperature, and compressor speed. Comparisons among the hybrid model, single ANN, and
PLS models, based on analysis of 148 experimental datasets, revealed the superior accuracy of the ANN model.
Consequently, it was deduced that the ANN outperformed alternative models under consideration.

To sum up, previous research has confirmed the possibility of applying artificial intelligence methods for the prediction
of compressor performance. To the best of the authors’ knowledge, there is still a lack of effective attempts to use
artificial intelligence methods to predict the performance of the vapor injection compressors for multiple compressor
technologies, which is currently in great need of a precise and fast predictive model for refrigeration or heat pump
system research. Therefore, in the current paper, an approach is developed using an ANN model to accurately predict
the performance of a vapor injected compressors by considering the rotational frequency (w), suction, injection, and
discharge pressure (Peyc, Pinj» Pais) as the inputs. Additionally, there is a lack of literature regarding refrigerant-
sensitive models, which can be trained using data for one refrigerant (such as R410A) and subsequently applied to
predict the performance of a drop-in refrigerant (such as R454B) using the same model coefficients. In particular, the
main contributions of the present work with respect to the available literature are as follows:

e Todevelop and validate an ANN model for the scroll and rotary compressor with refrigerants R410A, R454B,
and R407C

o To assess the ability of the ANN to predict compressor performance on a different, yet thermodynamically
similar, refrigerant than it was trained on.
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2. EXPERIMENTAL DATA COLLECTION AND COMPILATION
Experimental data is compiled from 6 vapor injected compressors of 2 technology types (rotary and scroll), using 3
refrigerants for a total of 195 steady state data points to be used for model training and evaluation. The majority of
this data is collected by the authors (116 data points), with supplemental data collected from the literature.

2.1 Experimental data collection — in house data

For the in-house data collection, the hot-gas bypass load stand has been used for collection of data on two scroll and
rotary compressors with refrigerants, R410A and R454B. The load stand is capable of testing both traditional and
economized compressors at saturated suction temperature as low as -34.44 °C (-30 °F) and saturated discharge
temperature as high as 60 °C (140 °F). The design capacity for the load stand is 1-5 tons (3.52-17.5 kW) compressor
capacity. Complete operational details and uncertainty of the load stand is presented in (Khan and Bradshaw 2024a).
Performance data for two compressor technologies, scroll and rotary, are collected with two working fluids, R410A
and R454B with a total of 116 data points. The compressors are commercially available hermetic compressors
originally designed for operation with R410A. The scroll compressor has a rated capacity of 5 tons and the rotary 3.25
tons. The complete test matrix was developed based on one factor at a time design of experiments method. The final
test matrix collected data at evaporating temperatures ranging from -34.44 °C to 10 °C (-30 °F to 50 °F), condensing
ranging from 23.8 °C to 54.44 °C (75 °F to 130 °F), superheat from 2.8 °C to 16.7 °C (5 °F to 30 °F), and speeds from
1800 rpm to 6000 rpm.

Supplemental experimental data was also collected from literature including data for a scroll compressor from
Dardenne et al. (2015) and (Tello-Oquendo et al. 2017b), both tested with R407C as shown in Table 1. A summary of
the data sets for the analysis of the models with compressor type, refrigerant, number of data points, and collection
standard is shown in Table 1. The full data set is then divided into two subsets for each model performance evaluation,
training and testing data set. The training data is used to develop the network of the proposed model, while the testing
data, which has not already been used in training, is employed to evaluate the generalization capability of the proposed
model. Therefore, 80% of the whole data set was selected randomly and utilized to train model, while the remaining
20% was used to test the robustness of the proposed model.

Table 1: Compiled experimental data sets

Compressor Type Capacity  Refrigerant  Data Points  Collection Standard
Rotary (In-House) 3.25 tons R410A 29 ASHRAE 23.1
Rotary (In-House) 3.25 tons R454B 29 ASHRAE 23.1
Scroll (In-House) 05 tons R410A 29 ASHRAE 23.1
Scroll (In-House) 05 tons R454B 29 ASHRAE 23.1
Scroll (Dardenne et al. 2015) 03 tons R407C 63 ASHRAE 23.1
Scroll (Tello-Oqu. et al., 2017b) 4.74 tons R407C 16 1ISO

3. DEVELOPMENT OF ANN FOR VAPOR INJECTED COMPRESSORS

3.1 Artificial Neural Network (ANNSs)

Acrtificial neural networks (ANNS) constitute predictive tools inspired by the functional principles of the human brain
and serve as effective models particularly when the relationship between inputs and outputs is ambiguous (Uckan et
al. 2015). This methodology, extensively utilized for prediction, pattern recognition, and classification tasks, has
garnered considerable attention (Kirisci and Simsek 2023). ANNs possess the capacity to discern and identify
correlated patterns through training, subsequently facilitating the prediction of new values. The architecture of a basic
ANN typically encompasses an input layer, a single hidden layer, and an output layer interconnected within the
network. The number of neurons in the input and output layers corresponds to the dimensions of the input and output
vectors, respectively, while the determination of neurons in the hidden layer often involves an iterative trial-and-error
process (Ghiasi et al. 2016).

A schematic representation of an ANN neuron is presented in Figure 1. In this configuration, a set of inputs denoted
as "n" is fed into the network. The performance of the network is contingent upon the weights and bias values
associated with each neuron. The net input function "A" is generated by the multiplication of input values with
corresponding weights, followed by the addition of bias. Subsequently, the output "S" is derived through the
application of a transfer function to the resultant net function, as expressed mathematically below:
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S = f(A) = fIX}-; Xiw; + b] 1)
where "X" is the input variable, "w" denotes the weight, and "b" represents the bias.

Transfer

Function

Figure 1: The model of ANN neuron.

During the training phase of the network, the predicted values generated by the ANN are compared with the actual
values. The weights linked to each input are iteratively adjusted, either increasing or decreasing, in accordance with
appropriate learning rules aimed at minimizing the disparity between desired and actual outcomes. This iterative
process of training and weight adjustment is commonly referred to as the back-propagation algorithm. The updated
weights are computed by the novel algorithm through the following formula:

wit = wi"jl‘]l + Aw;; (2)
In backpropagation, the error is propagated backwards through the network and the objective of this propagation is

the weights and biases adjustments. To minimize the loss, the weights are adjusted in the opposite direction of the
gradient:

JaL

where 7 stands for the learning rate, L stands for the loss function with respect to weights and N stands for the jth
term.

This process continues for multiple epochs until the network converges, i.e., until the error is minimized, and the
network learns to make accurate predictions on the training data. Briefly, the ANN approach follows the following
steps to reach the target outputs from the assigned inputs:

Select the inputs and outputs of the target problem.

Collect the data and assign training and testing data.

Define the architecture of the ANN by optimizing the hyperparameters.

Evaluation of the target problem after training with training data set.

3.2 Application of ANN for Vapor Injected Compressors

The Artificial Neural Network (ANN) employs interconnected nodes, akin to the human brain's structure, to process
numerical inputs. It optimizes its performance through an algorithm adjusting weights and biases via backpropagation.
This iterative process minimizes the disparity between predicted and actual outputs, enhancing predictive accuracy.
In this study, the Limited Memory Breydon-Flecher-Goldfarb-Shanno (Ibfgs) optimizer is employed which is usually
more stable, while the rectified linear activation function is used, which accurately and efficiently transforms negative
inputs to zero and preserves positive values. The mean absolute percent error (MAPE) is selected as the loss function.
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Four inputs, namely suction pressure, injection pressure, discharge pressure, and compressor speed, are fed into the
network, while the network outputs are evaporator mass flow rate, injection mass flow rate, discharge temperature,
and compressor power as shown in Figure 2. Each model comprises an input layer, a hidden layer, and an output layer.
The ANN model provides different outputs when the number of neurons in the hidden layer changes, which can
directly affect the generalization and approximation of the proposed model. In this regard, the number of neurons in
the hidden layer is changed to achieve an optimum architecture. The dataset for model training consists of randomly
selected data, with 80% allocated for training and 20% for testing. Due to the fact that the inputs of the ANN have
different orders of magnitude, both training and testing data sets have been normalized between 0.1 and 0.9, as outlined
in (J. Ma et al. 2020):

x, = 0.8——"min_ 4 01 (4)
Xmax~Xmin
During training, the data is passed through the input layer, and the optimization algorithm is applied, after configuring
the hyperparameters. It should be highlighted that, even if it is likely that a better result would be gained by using a
high number of neurons, data over-fitting and an increase in computational time may occur. Therefore, a low number
of neurons is preferable (Fatehi et al. 2014). Table 2 summarizes the artificial neural network architecture considered
for this study.

Table 2: ANN model architecture, developed in Python

Parameters Values

Machine Learning Package Scikit-learn

Inputs 4

Outputs 2

Hidden Layers 1

Nodes Per Layer 45

Activation Function Rectified Linear
Optimizer Limited Memory BFGS

Hidden layers

Figure 2: Schematic of ANN model

3.3 Error Metric to Evaluate Model Performance

The completed ANN is trained then evaluated for its ability to predict compressor power, evaporator, and injection
mass flow rates using the method. The ANN model is initially trained using 80% of the dataset and kept same model
architecture for fair comparison while evaluating performance for multiple compressor technologies and different
refrigerants. Following the training phase, the performance of the trained model is evaluated by comparing its
predictions against the corresponding test data obtained from experiments as described in Sections 2. The evaluation
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of model performance is quantified using the Mean Absolute Percentage Error (MAPE), which serves as a metric to
measure the accuracy and effectiveness of the models in predicting the desired outcomes,

_ 100 o Yiruei—Ypredict,i
MAPE = — )i |———| (5)
n Yirue,i

where n is the total number of data points in the data set, i is each data point, Yy ; and Y,,eqice; are the model
measured data value and model predicted data value for any performance parameter. The MAPE is calculated for both
the evaporator and injection mass flow rates as well as compressor power.

The Mean Absolute Error (MAE) is a metric used to evaluate the accuracy of a regression model. It measures the
average absolute difference between the actual and predicted values. In this paper, MAE is used to calculate the error
difference of temperature in Kelvin. The formula for calculating the Mean Absolute Error is:

1 "
MAE = —¥iL, 1yi = 3il, (6)
Where n stands for number of samples, y; stands for the actual value of target variable, ¥; stands for the predicted

value of target variable. MAE is used to calculate the absolute differences between the actual and predicted values
across all samples in the dataset specifically used for temperature.

4. RESULTS AND DISCUSSION
In the current study, ANN was developed and introduced for the fast and accurate estimation of the parameters of a
vapor injected compressor working with refrigerants R410A, R454B, and R407C. To highlight the merits of the
proposed model, 4 parameters, namely w, Py, Pinj, and Py, Were considered as the inputs of the model, while

Mepaps Minjr Weomp, and Tg;5 Were the outputs.
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In the ANN network, the number of neurons in the hidden layer changed between 1 and 45. According to MAPE
values analyzed, based on normalized data, the increase in the number of neurons from 1 to 45 brings a satisfactory
result, so overall 45 neurons were selected in 1 hidden layer due to higher accuracy of the model with lowest MAPE
values for the output parameters. A comparison between actual and predicted data using the developed approach is
presented and discussed in the following in detail to evaluate the proficiency of the ANN model. It is worth noting
that plots in Figures 3 and 4 are extracted using the readily available data in literature from (Dardenne et al., 2015).

Figure 3 show regression plots of the compressor power and compressor discharge temperature predicted by ANN
with respect to actual values of the data. In these figures, the predicted data are plotted on the vertical axes as a function
of the actual values. As clearly seen, almost all of the points are along a straight line, which highlights the reliability
of the ANN model in prediction of compressor power and compressor discharge temperature. As depicted from Figure
3, the MAPE value for the compressor power consumption is less than 2% and MAE for the discharge temperature is
1.39K, showing the superior predictive capability of ANN model.

Figure 4 illustrates the regression plots of the evaporator and injection mass flow rate predicted by ANN plotted on

the vertical axes against the actual values on the horizontal axes, respectively. Based on the results, the outcomes of
ANN are linearly aligned, confirming the suitability of the proposed ANN model for the prediction of evaporation and
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injection mass flow rate. The MAPE in case of evaporator mass flow rate is less than 1%, while in case of injection
mass flow rate prediction is almost 2%.
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MAPE and MAE, for each model predicted parameter is summarized in Table 3. As is evident from the Table, the
MAPE values are in the range of 1-2% for compressor power and mass flow rates, while in case of discharge
temperature, the MAE values are in the range of 1-2 K, except for few cases in which it exceeds the mentioned ranges,
showing the significance of ANN and its predictive capability. Aside from the good predictive capability of ANN, it
is worth noting that choosing the number of nodes, number of hidden layers, activation function, and solver is very
critical in special cases like compressors and their systems. The wrong selection of any of these hyperparameters will
result in over-fitting and/or poor predictions.

Table 3: Summary of ANN model results

Datasets MAPE (%) |MAPE (%) |MAPE (%) |MAE (K)
Wcomp mevap minj T yis

Rotary R410A 0.98 0.97 1.498 0.985
Rotary R454B 1.04 1.1 1.872 1.024
Scroll R410A 1.4 0.8 2.212 1.354
Scroll R454B 2.4 1.6 2.57 1.824
Tello-Og. 0.34 0.55 0.478 NA
Dardenne 0.67 0.784 2.175 1.018

4.3 Refrigerant Sensitivity Analysis

Refrigerant sensitivity analysis is the analysis in which a proposed model is trained with the training data of one
refrigerant (R410A) and uses the trained model to predict the performance of the testing data set of a drop-in refrigerant
(R454B). In this study, refrigerant sensitivity analysis was assessed for all output parameters. The in-house
experimental data obtained for this study includes identical datasets for both R454B and R410A on two compressors,
a scroll and a rotary. These results were used to train model with either R410A or R454B data and then attempt to
predict the performance of the other refrigerant.

The results, depicted in Figures 5, showcase the compressor power consumption, and discharge temperature
predictions. In these Figures, the predicted data are plotted on the vertical axes as a function of actual values. It is
important to note that Figures 5 and 6 are plotted for the case in which proposed model is trained with refrigerant
R410A training data set of rotary compressor and then tested with testing data set of the same rotary compressor with
R454B refrigerant. Even with refrigerant sensitivity analysis, the power prediction is under 2% MAPE while the
discharge temperature shows almost 4K MAE.
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Figure 6 illustrates the parity plots of the evaporator and injection mass flow rate predicted by ANN for refrigerant
sensitivity analysis plotted on the vertical axes against the actual values on the horizontal axes, respectively. Based on
the results, the outcomes of ANN are linearly aligned, confirming the suitability of the proposed ANN model for the
prediction of evaporation and injection mass flow rate. The MAPE in both the cases of evaporator and injection mass
flow rate is less than 5%.
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Figure 6: ANN results for refrigerant sensitivity analysis for Evaporator (left) and Injection Mass Flow Rate (right)

The results are summarized in Table 4, which shows the MAPE values range from 2-3% for compressor power and
mass flow rates, whereas for discharge temperature, the MAE values typically fall within the range of 3-4 K, with a
few exceptions exceeding these boundaries. In addition to the robust predictive capabilities of ANN, it is imperative
to highlight the criticality of selecting appropriate hyperparameters such as the number of nodes, hidden layers,
activation function, and solver, particularly in complex systems like compressors. Improper choices in these
hyperparameters may lead to overfitting, resulting in inaccurate predictions.

Table 4: Summary of ANN model results for refrigerant sensitivity analysis

Datasets W comp Meyap T Tais
Training Data | Testing Data | MAPE (%) | MAPE (%) |MAPE (%) |MAE (K)
Rotary R410A | Rotary R454B | 1.941 3.946 4.731 4.681
Rotary R454B | Rotary R410A | 0.798 3.251 1.922 3.451
Scroll R410A | ScrollR454B |2.124 3.542 2.547 3.825
Scroll R454B | ScrollR410A |2.548 2.981 3.154 4.254
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5. CONCLUSION

Given the significance of vapor injection compressor performance in air source heat pumps and the limitations
observed in existing models within this research domain, this study leveraged an Artificial Neural Network (ANN)
model to predict the output parameters of vapor injection compressors operating with R410A, R454B, and R407C. A
datasets comprising 195 data points sourced from both in-house experiments and literature was employed to develop
the proposed ANN model. Key parameters such as compressor rotational speed, suction, injection, and discharge
pressures, were utilized as inputs to the model, while compressor power, injection, and evaporator mass flow rates
and compressor discharge temperature served as outputs.

To evaluate the reliability of the proposed ANN model, two statistical error metrics were employed, and the results
were extensively discussed. The findings indicated that the ANN model exhibited a high level of accuracy and
efficiency in predicting the output parameters of vapor-injected compressors. However, it was noted that the accuracy
of the ANN model was contingent upon the quality and quantity of the training dataset. In the case of refrigerant
sensitivity, the MAPE was less than 5% for all output parameters. Overall, the suggested model is faster and displays
better performance as well as simpler to use and reliable, which can be great addition to the modeling side of HVAC
factories for predicting vapor injected compressors performance for system development by integrating the proposed
model with system model. Future attempts should be practiced optimizing the activation functions, number of neurons
per layer, and training algorithm for better ANN structure for a specific problem.

NOMENCLATURE

My Mass flow rate through the injection line [ka/s]
Mevap Mass flow rate through evaporator [ka/s]
Peond Condensing pressure [kPa]
Dinj Injection pressure [kPa]
Pevap Evaporating pressure [kPa]
Tais Discharge temperature [°C]
Weomp Compressor power [kW]
Abbreviations
ANN Actificial Neural Network
AHRI Air-Conditioning, Heating, and

Refrigeration Institute
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
Greek Symbols
o) Compressor speed [rom]
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