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ABSTRACT 
Positive displacement compressors have recently begun to include vapor injection more frequently to adapt to energy 

efficiency and decarbonization goals. High-accuracy models are crucial to predict the compressor performance for 

rapid integration into HVAC&R systems. Most existing empirical models use more than 10 experimental data points 

for accurate performance prediction, which can prove burdensome. This study aims to address the need for more 

universal and versatile compressor mapping methodologies that do not require such intensive and expensive 

experimental testing. An artificial neural network (ANN) based vapor-injected compressor performance mapping 

approach is proposed. The proposed ANN model architecture comprises of one input layer, one output layer, and one 

hidden layer. Input layer includes input parameters such as compressor speed, and suction, injection, and discharge 

pressures while output layer includes output parameters such as evaporator mass flow rate, injection mass flow rate, 

compressor power, and discharge temperature. In addition, this study qualifies the feasibility and reliability of the 

proposed ANN model using Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). Data is 

collected on vapor injected scroll and rotary compressors with R410A and R454B to train and test the model. The 

model can predict the evaporator mass flow rate, injection mass flow rate, and compressor input power within 5% 

MAPE, and discharge temperature with 5K MAE. 

 

1. INTRODUCTION 
 

Improving heat pump performance remains a significant challenge in refrigeration research. Refrigerant injection has 

emerged as a key technical solution for air source heat pumps operating in regions with low ambient temperatures. 

Within such systems, refrigerant injection is categorized into vapor and liquid subgroups. Vapor injection, in particular, 

is employed to enhance cooling/heating capacity at the same compressor's stroke volume, presenting distinct 

advantages over liquid refrigerant injection (Xu et al. 2011). This technique has been extensively explored in various 

research published as a potential enhancement for air source heat pump systems. 

Ma and Zhao, (2008) conducted an experimental investigation into the vapor injection heat pump cycle, incorporating 

a flash tank coupled with a scroll compressor. Wang et al. (2009) explored the performance of a 11kW R410A heat 

pump system employing a two-stage vapor injected scroll compressor through experimental means, thereby 

establishing fundamental design and operational guidelines for heat pump systems. Xu et al. (2011) extensively 

analyzed the performance disparity between R410A and R32 in a vapor-injected heat pump system utilizing a scroll 

compressor. Bertsch and Groll (2008) undertook simulation, design, construction, and testing of an air source two-

stage heat pump system utilizing a scroll compressor under low ambient temperatures reaching -30 °C. Concurrently, 

similar experimental investigations of vapor-injected compressors showed enhanced performance, highlighting the 

significance of economization and vapor injection, as evidenced by a comprehensive review encompassing more than 

50 papers (Yang et al. 2015,  Cho et al., 2012, Khan and Bradshaw 2023). 

Assessing the performance of vapor injection compressors constitutes a critical aspect of investigating the impact of 

injection on the system. Presently, two primary methods are employed for modeling compressor performance: 

efficiency methods based on the data collected from the experimental setups and detailed physics based models 

(Tanveer et al. 2022; Tanveer and Bradshaw 2021). However, unlike conventional scroll compressors devoid of 

injection, conventional efficiency models like the AHRI 10-coefficient model (Aute et al., 2015) are inadequate for 
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representing the performance of injection scroll compressors due to the variable parameters associated with injected 

refrigerants. Consequently, researchers have extensively explored and applied either black box models tailored for 

vapor injection compressors (Tello-Oquendo et al., 2017) or comprehensive thermodynamic-principle-based models 

in predicting the performance of compressors (Bradshaw et al. 2016; Orosz et al. 2014; Islam et al. 2021). 

The black-box model is one of the modelling approaches, which does not rely on specific physical information 

regarding compression and injection processes within the compressor. Instead, these models typically comprise 

polynomial equations, where the coefficients are adjusted to match experimental data. The primary challenge 

associated with black-box models is the issue of overfitting. Consequently, the model cannot predict the performance 

for unseen data and performs poorly in case of extrapolation (Hu et al. 2020). Black box models for vapor injected 

compressors in literature have been developed for scroll compressors (Tello-Oquendo et al. 2017b; Navarro et al. 

2013, Khan and Bradshaw 2024b, Lumpkin et al. 2018).  

In recent years, machine learning techniques and artificial intelligence methods have been utilized to accurately predict 

the performance of components or systems in different fields (Ledesma et al., 2015). In addition to all black-box 

models mentioned earlier, machine learning approaches such as artificial neural network (ANN), have been used for 

systems and compressor performance prediction in HVAC systems (J. Ma et al. 2020, Yousaf et al., 2022). With respect 

to positive displacement machines, Artificial Neural Network (ANN), Adaptive Neuro Fuzzy Interference System 

(ANFIS), and other hybrid approaches, e.g., ANN-PLS (Partial Least Squares), have been applied to characterize the 

performance of compressors such as reciprocating (Gabel and Bradshaw 2023, Ledesma et al., 2015).  

The efficacy of artificial intelligence (AI) methodologies, in terms of both accuracy and computational efficiency, has 

been substantiated in the context of vapor compression systems. In the realm of compressor analysis, (Sanaye et al. 

2011) developed an artificial neural network (ANN) approach tailored for a rotary vane compressor. This method 

leveraged inputs such as refrigerant suction temperature and pressure, compressor rotation speed, and refrigerant 

discharge pressure to predict the refrigerant mass flow rate and discharge temperature. Utilizing experimental data for 

model development, the ANN demonstrated superior performance compared to a nonlinear regression model. 

Similarly, Belman-Flores et al. (2015) employed ANN and physical models to estimate refrigerant mass flow rate, 

discharge temperature, and energy consumption for a reciprocating compressor. Inputs encompassed suction pressure, 

suction temperature, discharge pressure, and compressor rotation speed, with experimental data for R1234yf and 

R134a utilized for model validation. Tian et al. (2015) introduced a hybrid model, namely ANN-PLS, to forecast 

parameters such as volumetric efficiency, refrigerant mass flow rate, discharge temperature, and power consumption 

for a variable scroll compressor operating with R134a. This approach integrated inputs including evaporation 

temperature, condensing temperature, and compressor speed. Comparisons among the hybrid model, single ANN, and 

PLS models, based on analysis of 148 experimental datasets, revealed the superior accuracy of the ANN model. 

Consequently, it was deduced that the ANN outperformed alternative models under consideration. 

To sum up, previous research has confirmed the possibility of applying artificial intelligence methods for the prediction 

of compressor performance. To the best of the authors’ knowledge, there is still a lack of effective attempts to use 

artificial intelligence methods to predict the performance of the vapor injection compressors for multiple compressor 

technologies, which is currently in great need of a precise and fast predictive model for refrigeration or heat pump 

system research. Therefore, in the current paper, an approach is developed using an ANN model to accurately predict 

the performance of a vapor injected compressors by considering the rotational frequency (⍵), suction, injection, and 

discharge pressure (𝑃𝑠𝑢𝑐 , 𝑃𝑖𝑛𝑗  , 𝑃𝑑𝑖𝑠 ) as the inputs. Additionally, there is a lack of literature regarding refrigerant-

sensitive models, which can be trained using data for one refrigerant (such as R410A) and subsequently applied to 

predict the performance of a drop-in refrigerant (such as R454B) using the same model coefficients. In particular, the 

main contributions of the present work with respect to the available literature are as follows: 

• To develop and validate an ANN model for the scroll and rotary compressor with refrigerants R410A, R454B, 

and R407C 

• To assess the ability of the ANN to predict compressor performance on a different, yet thermodynamically 

similar, refrigerant than it was trained on. 
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2. EXPERIMENTAL DATA COLLECTION AND COMPILATION 
Experimental data is compiled from 6 vapor injected compressors of 2 technology types (rotary and scroll), using 3 

refrigerants for a total of 195 steady state data points to be used for model training and evaluation. The majority of 

this data is collected by the authors (116 data points), with supplemental data collected from the literature.  

2.1 Experimental data collection – in house data 
For the in-house data collection, the hot-gas bypass load stand has been used for collection of data on two scroll and 

rotary compressors with refrigerants, R410A and R454B. The load stand is capable of testing both traditional and 

economized compressors at saturated suction temperature as low as -34.44 ℃ (-30 ℉) and saturated discharge 

temperature as high as 60 ℃ (140 ℉). The design capacity for the load stand is 1-5 tons (3.52-17.5 kW) compressor 

capacity. Complete operational details and uncertainty of the load stand is presented in (Khan and Bradshaw 2024a). 

Performance data for two compressor technologies, scroll and rotary, are collected with two working fluids, R410A 

and R454B with a total of 116 data points. The compressors are commercially available hermetic compressors 

originally designed for operation with R410A. The scroll compressor has a rated capacity of 5 tons and the rotary 3.25 

tons. The complete test matrix was developed based on one factor at a time design of experiments method. The final 

test matrix collected data at evaporating temperatures ranging from -34.44 ℃ to 10 ℃ (-30 °F to 50 °F), condensing 

ranging from 23.8 ℃ to 54.44 ℃ (75 °F to 130 °F), superheat from 2.8 ℃ to 16.7 ℃ (5 °F to 30 °F), and speeds from 

1800 rpm to 6000 rpm.  

Supplemental experimental data was also collected from literature including data for a scroll compressor from 

Dardenne et al. (2015) and (Tello-Oquendo et al. 2017b), both tested with R407C as shown in Table 1. A summary of 

the data sets for the analysis of the models with compressor type, refrigerant, number of data points, and collection 

standard is shown in Table 1. The full data set is then divided into two subsets for each model performance evaluation, 

training and testing data set. The training data is used to develop the network of the proposed model, while the testing 

data, which has not already been used in training, is employed to evaluate the generalization capability of the proposed 

model. Therefore, 80% of the whole data set was selected randomly and utilized to train model, while the remaining 

20% was used to test the robustness of the proposed model. 

Table 1: Compiled experimental data sets 

Compressor Type Capacity Refrigerant Data Points Collection Standard 

Rotary (In-House) 3.25 tons R410A 29 ASHRAE 23.1 

Rotary (In-House) 3.25 tons R454B 29 ASHRAE 23.1 

Scroll (In-House) 05 tons R410A 29 ASHRAE 23.1 

Scroll (In-House) 05 tons R454B 29 ASHRAE 23.1 

Scroll (Dardenne et al. 2015)  03 tons R407C 63 ASHRAE 23.1 

Scroll (Tello-Oqu. et al., 2017b) 4.74 tons R407C 16 ISO 

 

3. DEVELOPMENT OF ANN FOR VAPOR INJECTED COMPRESSORS 

3.1 Artificial Neural Network (ANNs) 
Artificial neural networks (ANNs) constitute predictive tools inspired by the functional principles of the human brain 

and serve as effective models particularly when the relationship between inputs and outputs is ambiguous (Uçkan et 

al. 2015). This methodology, extensively utilized for prediction, pattern recognition, and classification tasks, has 

garnered considerable attention (Kirişci and Simsek 2023). ANNs possess the capacity to discern and identify 

correlated patterns through training, subsequently facilitating the prediction of new values. The architecture of a basic 

ANN typically encompasses an input layer, a single hidden layer, and an output layer interconnected within the 

network. The number of neurons in the input and output layers corresponds to the dimensions of the input and output 

vectors, respectively, while the determination of neurons in the hidden layer often involves an iterative trial-and-error 

process (Ghiasi et al. 2016). 

A schematic representation of an ANN neuron is presented in Figure 1. In this configuration, a set of inputs denoted 

as "n" is fed into the network. The performance of the network is contingent upon the weights and bias values 

associated with each neuron. The net input function "A" is generated by the multiplication of input values with 

corresponding weights, followed by the addition of bias. Subsequently, the output "S" is derived through the 

application of a transfer function to the resultant net function, as expressed mathematically below: 
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S = f(A) = f[∑ 𝑋𝑖𝑤𝑖 + 𝑏𝑛
𝑖=1 ]                                                 (1) 

where "𝑋" is the input variable, "𝑤" denotes the weight, and "𝑏" represents the bias. 

 

 
Figure 1: The model of ANN neuron. 

During the training phase of the network, the predicted values generated by the ANN are compared with the actual 

values. The weights linked to each input are iteratively adjusted, either increasing or decreasing, in accordance with 

appropriate learning rules aimed at minimizing the disparity between desired and actual outcomes. This iterative 

process of training and weight adjustment is commonly referred to as the back-propagation algorithm. The updated 

weights are computed by the novel algorithm through the following formula: 

 

𝑤𝑖𝑗
new = 𝑤𝑖𝑗

old + ∆𝑤𝑖𝑗                                                                             (2) 

In backpropagation, the error is propagated backwards through the network and the objective of this propagation is 

the weights and biases adjustments. To minimize the loss, the weights are adjusted in the opposite direction of the 

gradient: 

∆𝑤𝑖𝑗 =  −𝜂
∂𝐿

∂𝑤𝑖𝑗
𝑁𝑗                                                                        (3) 

where 𝜂 stands for the learning rate, 𝐿 stands for the loss function with respect to weights and 𝑁 stands for the jth 

term. 

This process continues for multiple epochs until the network converges, i.e., until the error is minimized, and the 

network learns to make accurate predictions on the training data. Briefly, the ANN approach follows the following 

steps to reach the target outputs from the assigned inputs: 

• Select the inputs and outputs of the target problem. 

• Collect the data and assign training and testing data. 

• Define the architecture of the ANN by optimizing the hyperparameters. 

• Evaluation of the target problem after training with training data set. 

 

3.2 Application of ANN for Vapor Injected Compressors 

The Artificial Neural Network (ANN) employs interconnected nodes, akin to the human brain's structure, to process 

numerical inputs. It optimizes its performance through an algorithm adjusting weights and biases via backpropagation. 

This iterative process minimizes the disparity between predicted and actual outputs, enhancing predictive accuracy. 

In this study, the Limited Memory Breydon-Flecher-Goldfarb-Shanno (lbfgs) optimizer is employed which is usually 

more stable, while the rectified linear activation function is used, which accurately and efficiently transforms negative 

inputs to zero and preserves positive values. The mean absolute percent error (MAPE) is selected as the loss function. 
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Four inputs, namely suction pressure, injection pressure, discharge pressure, and compressor speed, are fed into the 

network, while the network outputs are evaporator mass flow rate, injection mass flow rate, discharge temperature, 

and compressor power as shown in Figure 2. Each model comprises an input layer, a hidden layer, and an output layer. 
The ANN model provides different outputs when the number of neurons in the hidden layer changes, which can 

directly affect the generalization and approximation of the proposed model. In this regard, the number of neurons in 

the hidden layer is changed to achieve an optimum architecture. The dataset for model training consists of randomly 

selected data, with 80% allocated for training and 20% for testing. Due to the fact that the inputs of the ANN have 

different orders of magnitude, both training and testing data sets have been normalized between 0.1 and 0.9, as outlined 

in (J. Ma et al. 2020): 

𝑥𝑛 = 0.8
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ 0.1                                                                     (4) 

During training, the data is passed through the input layer, and the optimization algorithm is applied, after configuring 

the hyperparameters. It should be highlighted that, even if it is likely that a better result would be gained by using a 

high number of neurons, data over-fitting and an increase in computational time may occur. Therefore, a low number 

of neurons is preferable (Fatehi et al. 2014). Table 2 summarizes the artificial neural network architecture considered 

for this study. 

Table 2: ANN model architecture, developed in Python 

Parameters Values 

Machine Learning Package Scikit-learn 

Inputs 4 

Outputs 2 

Hidden Layers 1 

Nodes Per Layer 45 

Activation Function Rectified Linear 

Optimizer Limited Memory BFGS 

 

 
Figure 2: Schematic of ANN model 

3.3 Error Metric to Evaluate Model Performance 
The completed ANN is trained then evaluated for its ability to predict compressor power, evaporator, and injection 

mass flow rates using the method. The ANN model is initially trained using 80% of the dataset and kept same model 

architecture for fair comparison while evaluating performance for multiple compressor technologies and different 

refrigerants. Following the training phase, the performance of the trained model is evaluated by comparing its 

predictions against the corresponding test data obtained from experiments as described in Sections 2. The evaluation 
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of model performance is quantified using the Mean Absolute Percentage Error (MAPE), which serves as a metric to 

measure the accuracy and effectiveness of the models in predicting the desired outcomes, 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑌𝑡𝑟𝑢𝑒,𝑖−𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖

𝑌𝑡𝑟𝑢𝑒,𝑖
|𝑛

𝑖=1 ,                                                         (5) 

where 𝑛  is the total number of data points in the data set, 𝑖  is each data point, 𝑌𝑡𝑟𝑢𝑒,𝑖  and 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖  are the model 

measured data value and model predicted data value for any performance parameter. The MAPE is calculated for both 

the evaporator and injection mass flow rates as well as compressor power.  

 

The Mean Absolute Error (MAE) is a metric used to evaluate the accuracy of a regression model.  It measures the 

average absolute difference between the actual and predicted values. In this paper, MAE is used to calculate the error 

difference of temperature in Kelvin. The formula for calculating the Mean Absolute Error is: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1 ,                                                             (6) 

Where n stands for number of samples, 𝑦𝑖  stands for the actual value of target variable, 𝑦̂𝑖 stands for the predicted 

value of target variable. MAE is used to calculate the absolute differences between the actual and predicted values 

across all samples in the dataset specifically used for temperature. 

 

4. RESULTS AND DISCUSSION 
In the current study, ANN was developed and introduced for the fast and accurate estimation of the parameters of a 

vapor injected compressor working with refrigerants R410A, R454B, and R407C. To highlight the merits of the 

proposed model, 4 parameters, namely ⍵, 𝑃𝑠𝑢𝑐 , 𝑃𝑖𝑛𝑗 , and 𝑃𝑑𝑖𝑠 , were considered as the inputs of the model, while 

𝑚̇𝑒𝑣𝑎𝑝, 𝑚̇𝑖𝑛𝑗, 𝑊̇𝑐𝑜𝑚𝑝, and 𝑇𝑑𝑖𝑠 were the outputs.  

 

 
Figure 3: ANN Results for Compressor Power (right) and Discharge Temperature (left) 

In the ANN network, the number of neurons in the hidden layer changed between 1 and 45. According to MAPE 

values analyzed, based on normalized data, the increase in the number of neurons from 1 to 45 brings a satisfactory 

result, so overall 45 neurons were selected in 1 hidden layer due to higher accuracy of the model with lowest MAPE 

values for the output parameters. A comparison between actual and predicted data using the developed approach is 

presented and discussed in the following in detail to evaluate the proficiency of the ANN model. It is worth noting 

that plots in Figures 3 and 4 are extracted using the readily available data in literature from (Dardenne et al., 2015). 

Figure 3 show regression plots of the compressor power and compressor discharge temperature predicted by ANN 

with respect to actual values of the data. In these figures, the predicted data are plotted on the vertical axes as a function 

of the actual values. As clearly seen, almost all of the points are along a straight line, which highlights the reliability 

of the ANN model in prediction of compressor power and compressor discharge temperature. As depicted from Figure 

3, the MAPE value for the compressor power consumption is less than 2% and MAE for the discharge temperature is 

1.39K, showing the superior predictive capability of ANN model. 

Figure 4 illustrates the regression plots of the evaporator and injection mass flow rate predicted by ANN plotted on 

the vertical axes against the actual values on the horizontal axes, respectively. Based on the results, the outcomes of 

ANN are linearly aligned, confirming the suitability of the proposed ANN model for the prediction of evaporation and 
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injection mass flow rate. The MAPE in case of evaporator mass flow rate is less than 1%, while in case of injection 

mass flow rate prediction is almost 2%.  

 
Figure 4: ANN results for Evaporator (left) and Injection Mass Flow Rate (right) 

MAPE and MAE, for each model predicted parameter is summarized in Table 3. As is evident from the Table, the 

MAPE values are in the range of 1-2% for compressor power and mass flow rates, while in case of discharge 

temperature, the MAE values are in the range of 1-2 K, except for few cases in which it exceeds the mentioned ranges, 

showing the significance of ANN and its predictive capability. Aside from the good predictive capability of ANN, it 

is worth noting that choosing the number of nodes, number of hidden layers, activation function, and solver is very 

critical in special cases like compressors and their systems. The wrong selection of any of these hyperparameters will 

result in over-fitting and/or poor predictions.  

Table 3: Summary of ANN model results 

 
4.3 Refrigerant Sensitivity Analysis 
Refrigerant sensitivity analysis is the analysis in which a proposed model is trained with the training data of one 

refrigerant (R410A) and uses the trained model to predict the performance of the testing data set of a drop-in refrigerant 

(R454B). In this study, refrigerant sensitivity analysis was assessed for all output parameters. The in-house 

experimental data obtained for this study includes identical datasets for both R454B and R410A on two compressors, 

a scroll and a rotary. These results were used to train model with either R410A or R454B data and then attempt to 

predict the performance of the other refrigerant.  

The results, depicted in Figures 5, showcase the compressor power consumption, and discharge temperature 

predictions. In these Figures, the predicted data are plotted on the vertical axes as a function of actual values. It is 

important to note that Figures 5 and 6 are plotted for the case in which proposed model is trained with refrigerant 

R410A training data set of rotary compressor and then tested with testing data set of the same rotary compressor with 

R454B refrigerant. Even with refrigerant sensitivity analysis, the power prediction is under 2% MAPE while the 

discharge temperature shows almost 4K MAE. 
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Figure 5: ANN Results for refrigerant sensitivity analysis of Compressor Power (left) and Discharge Temperature 

(right) 

Figure 6 illustrates the parity plots of the evaporator and injection mass flow rate predicted by ANN for refrigerant 

sensitivity analysis plotted on the vertical axes against the actual values on the horizontal axes, respectively. Based on 

the results, the outcomes of ANN are linearly aligned, confirming the suitability of the proposed ANN model for the 

prediction of evaporation and injection mass flow rate. The MAPE in both the cases of evaporator and injection mass 

flow rate is less than 5%.  

 
Figure 6: ANN results for refrigerant sensitivity analysis for Evaporator (left) and Injection Mass Flow Rate (right) 

The results are summarized in Table 4, which shows the MAPE values range from 2-3% for compressor power and 

mass flow rates, whereas for discharge temperature, the MAE values typically fall within the range of 3-4 K, with a 

few exceptions exceeding these boundaries. In addition to the robust predictive capabilities of ANN, it is imperative 

to highlight the criticality of selecting appropriate hyperparameters such as the number of nodes, hidden layers, 

activation function, and solver, particularly in complex systems like compressors. Improper choices in these 

hyperparameters may lead to overfitting, resulting in inaccurate predictions. 

Table 4: Summary of ANN model results for refrigerant sensitivity analysis 
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5. CONCLUSION 
Given the significance of vapor injection compressor performance in air source heat pumps and the limitations 

observed in existing models within this research domain, this study leveraged an Artificial Neural Network (ANN) 

model to predict the output parameters of vapor injection compressors operating with R410A, R454B, and R407C. A 

datasets comprising 195 data points sourced from both in-house experiments and literature was employed to develop 

the proposed ANN model. Key parameters such as compressor rotational speed, suction, injection, and discharge 

pressures, were utilized as inputs to the model, while compressor power, injection, and evaporator mass flow rates 

and compressor discharge temperature served as outputs. 

To evaluate the reliability of the proposed ANN model, two statistical error metrics were employed, and the results 

were extensively discussed. The findings indicated that the ANN model exhibited a high level of accuracy and 

efficiency in predicting the output parameters of vapor-injected compressors. However, it was noted that the accuracy 

of the ANN model was contingent upon the quality and quantity of the training dataset. In the case of refrigerant 

sensitivity, the MAPE was less than 5% for all output parameters. Overall, the suggested model is faster and displays 

better performance as well as simpler to use and reliable, which can be great addition to the modeling side of HVAC 

factories for predicting vapor injected compressors performance for system development by integrating the proposed 

model with system model. Future attempts should be practiced optimizing the activation functions, number of neurons 

per layer, and training algorithm for better ANN structure for a specific problem. 

NOMENCLATURE 
𝑚̇𝑖𝑛𝑗           Mass flow rate through the injection line             [kg/s] 

𝑚𝑒𝑣𝑎𝑝
.  Mass flow rate through evaporator [kg/s] 

𝑝𝑐𝑜𝑛𝑑 Condensing pressure [kPa] 

𝑝𝑖𝑛𝑗                                                     Injection pressure       [kPa] 

𝑝𝑒𝑣𝑎𝑝 Evaporating pressure [kPa] 

𝑇𝑑𝑖𝑠                                               Discharge temperature [℃] 

𝑊̇𝑐𝑜𝑚𝑝 Compressor power [kW] 

Abbreviations 
ANN        Artificial Neural Network  
AHRI         Air-Conditioning, Heating, and 

Refrigeration Institute 

 

MAPE          Mean Absolute Percentage Error  
MAE Mean Absolute Error  
   

Greek Symbols 
⍵ Compressor speed [rpm] 
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