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ABSTRACT

In high temperature gradients regions, vapor compression systems operate at very high-pressure ratios, results in
higher discharge temperatures and a reduction in system performance. Economized vapor injection compressors are
used to avoid these issues, yet a precise predictive map for various compressor technologies with minimal data and
relatively better performance is unclear. This paper establishes a black-box compressor model to accurately predict
compressor evaporator mass flow rate, injection mass ratio, and power in compressors with a single vapor injection
port. This model is compared against three legacy models from literature and the ANN model, for reference. All five
models are evaluated based on their ability to predict the aforementioned metrics. The proposed black-box model can
predict the relevant metrics all within 5% Mean Absolute Percentage Error (MAPE). Additionally, a refrigerant
sensitivity analysis is performed with the black-box model. The model is trained with data from R410A and used to
predict the performance of the same compressor with R454B, and vice versa. The model can predict evaporator mass
flow within 3%, power within 2%, and injection mass ratio within 3% MAPE.

1. INTRODUCTION

When the temperature difference between indoor and outdoor temperatures is significant the COP of heat pumps is
greatly reduced, attributed mostly to compressor behavior. The large temperature differences create equivalently large
pressure ratios and compressors have resultingly low volumetric and compressor isentropic efficiencies in these
scenarios. Therefore, compressor power consumption increases significantly, and the discharge temperature reaches
inappropriately high values affecting the compressor reliability and endurance. This is one major reason heat pumps
are limited in severe climate conditions (Khan and Bradshaw, 2022). Heat pumps that include economization have the
potential to address these limitations but modeling the vapor injected compressors needed for these heat pumps is
currently challenging for equipment manufacturers.

To address the limitations in compressors, various cycle modifications such as intercooling, cascade refrigeration, and
flash tank economization have been proposed, with vapor injection presenting a promising solution. Economized
vapor injection cycles have been considered to achieve a reduction in specific compressor work and increase in
capacity, resulting in increased system COP (Xu et al., 2011). This technique consists of injecting refrigerant from the
condenser outlet to an intermediate pressure, optimized to maximize cycle efficiency (Mathison et al., 2011).

Economized cycles have become the basis of many new heat pump designs, particularly those targeting cold-climate
operation (Residential CCHP Challenge DOE, 2021), and have demonstrated benefits through experimental study.
Wang et al., (2009b) studied the performance of 11kW R410A heat pump system with a two-stage vapor injected scroll
compressor, experimentally, and set a general principle for the design and operation of heat pump systems. Results
showed that maximum COP of the system can be achieved when the injection pressure is equal to the injection pressure
at which the cooling capacity is maximum. It is also concluded from the study that heating capacity gain varies from
13% to 33%, as the ambient temperature decreases from 16.7°C to -17.6°C, showing the significance of vapor injected
compressors at high temperature lift. Similar results were captured during experimental investigation of vapor injected
compressor showing significance of economization and vapor injection by (Yang et al., 2015, Cho et al., 2002).
Overall, the benefits of economization and vapor injection included, well-demonstrated benefits to COP and cold-
climate operation.

The compressor serves as the pivotal component within the vapor compression system, embodying its complexity.
Scroll compressors are the predominant compressor technology of choice in unitary equipment, including heat pumps.
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Scroll compressors provide several advantages including independent compression chambers inside scroll
compressors, making it easy to incorporate vapor injection in it by providing many options for injection port location
that maximizes cycle efficiency. Most research on vapor injection is focused on its application in Scroll compressors
(Feng et al., 2009; Lumpkin et al., 2018a; Moesch et al., 2016.; Tello Oquendo et al., 2016a; Tello-Oquendo et al.,
2019; B. Wang et al., 2009; X. Wang et al., 2009a). A common theme of compression-based studies is a wide variety
of modeling approaches for compressors with vapor injection with no clear and obvious best way to model scroll
compressors for system development.

The black-box model is one of the modelling approaches, which does not rely on specific physical information
regarding compression and injection processes within the compressor. Instead, these models typically comprise
polynomial equations, where the coefficients are adjusted to match experimental data. The primary challenge
associated with black-box models is the issue of overfitting. These models cannot predict the performance for unseen
data and perform poorly in case of extrapolation (Hu et al., 2020). Black box models for vapor injected compressors
in literature have only been developed for scroll compressors and its performance evaluation for multiple compressor
technologies is missing, discussed in detail in section 3 (Navarro et al., 2013, Tello-Oquendo et al., 2017a, Lumpkin
et al., 2018b). In addition to all these black-box models, machine learning approaches such as ANN, have been used
for systems and compressor performance prediction in HVAC systems (Gabel and Bradshaw, 2023, Ziviani et al.,
2018, Ledesma et al., 2015; Ma et al., 2020; Sanaye et al., 2011; Yousaf et al., 2022).

In summary, all existing black-box models have been exclusively characterized for vapor injection scroll compressor
technology, with no consideration given to other compressor technologies for performance evaluation. Furthermore,
these models require substantial amounts of data, often exceeding 10 data points, to predict the performance of
variable-speed compressors accurately. Additionally, there is a lack of literature regarding refrigerant-flexible models,
which can be trained using data for one refrigerant (such as R410A) and subsequently applied to predict the
performance of a drop-in refrigerant (such as R454B) using the same model coefficients.

The objective of this study is to bridge this gap in the literature by proposing a model that demonstrates refrigerant
flexibility, a reduced number of coefficients, and applicability to both scroll and rotary compressors with generalized
accuracy of less than 5%, compared with experimental data. The proposed model will be compared against models
developed by Oquendo, Lumpkin, Navarro, and an ANN model (Tello-Oquendo et al. 2017; Lumpkin et al. 2018;
Navarro et al. 2013; Ledesma et al. 2015). Each model is trained using in-house data on vapor injection rotary and
scroll compressors collected on both R410A and R454B. The experimental data collection, detailed descriptions of
the reference models and the develop model are presented in the following sections.

2. EXPERIMENTAL COLLECTION AND COMPILATION OF DATA SETS

Experimental data is compiled from 6 vapor injected compressors of 2 technology types (rotary and scroll), using 3
refrigerants for a total of 195 data points to be used for model training and evaluation. The majority of this data is
collected by the authors (116 data points), with supplemental data collected from the literature.

2.1 Experimental data collection — in house data

For the in-house data collection, the hot-gas bypass load stand has been used for collection of data on two scroll and
rotary compressors with refrigerants, R410A and R454B. The load stand is capable of testing both traditional and
economized compressors at saturated suction temperature as low as -34.44 °C (-30 °F) and saturated discharge
temperature as high as 60 °C (140 °F). The design capacity for the load stand is 1-5 tons compressor capacity. Complete
operational details and uncertainty of the load stand is presented in (Khan and Bradshaw 2024).

2.2 Compressor Selection and Test Matrix Generation

Performance data for two compressor technologies, scroll and rotary, are collected with two working fluids, R410A
and R454B with a total number of 116 data points. The compressors are commercially available hermetic compressors
originally designed for operation with R410A. The scroll compressor has a rated capacity of 5 tons and the rotary 3.25
tons. The complete test matrix was developed based on one factor at a time design of experiments method. The final
test matrix collected data at evaporating temperatures ranging from -1.11 °C to 10 °C (-30 °F to 50 °F), condensing
ranging from 23.8 °C to 54.44 °C (75 °F to 130 °F), superheat from 2.8 °C to 16.7 °C (5 °F to 30 °F), and speeds from
1800 rpm to 6000 rpm.

Supplemental experimental data was also collected from literature including data for a scroll compressor from
Dardenne et al., (2015b) and Tello-Oquendo et al., (2017b), both tested with R407C as shown in Table 1, a summary
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of the data sets for the analysis of the models with compressor type, refrigerant, number of data points, and collection
standard is shown. The full data set is then divided into two subsets for each model performance evaluation, training
and testing data set.

Table 1: Compiled experimental data sets.

Compressor Type Capacity  Refrigerant  Data Points Collection Standard

Rotary (In-House) 3.25 tons R410A 29 ASHRAE 23.1

Rotary (In-House) 3.25 tons R454B 29 ASHRAE 23.1

Scroll (In-House) 05 tons R410A 29 ASHRAE 23.1

Scroll (In-House) 05 tons R454B 29 ASHRAE 23.1
Scroll (Dardenne et al., 2015b) 03 tons R407C 63 ASHRAE 23.1
Scroll (Oquendo et al., 2017b) 4.74 tons R407C 16 1SO

3. SELECTED MODELS DESCRIPTION

This section provides an overview of the 5 selected models chosen for vapor injection compressor performance
evaluation. The models included in the analysis are Artificial Neural Network (ANN) as a baseline model, and four
other models are Navarro et al., (2013b), Tello-Oquendo et al., (2017b), Lumpkin et al., (2018b), and model developed
for this work, referred to as the ‘proposed model’. While numerous output variables are of interest in a compressor
model, the focus of this discussion is on the prediction of compressor injection mass ratio, evaporator mass flow rate,
and compressor power.

3.1.1 Artificial Neural Network

The ANN serves as the benchmark for comparing with other black-box models. The ability of an ANN to obtain
connections between data is exceptional. However, it is difficult to standardize an ANN and make it re-producible for
many compressors, so it is not a useful candidate for final model selection. Therefore, the use of the ANN is to
represent a very good model prediction and used solely for comparative purposes.

The ANN consists of interconnected layers and nodes that process numerical inputs. This machine learning model
relies on an optimization algorithm that adjusts the weights and biases within the network by utilizing backpropagation
of error through the loss function. In this study, the Limited Memory Breydon-Flecher-Goldfarb-Shanno (Ibfgs)
optimizer is employed which is usually more stable, while the rectified linear activation function is used, which
accurately and efficiently transforms negative inputs to zero and preserves positive values. The mean absolute percent
error (MAPE) is selected as the loss function. Four inputs, namely suction pressure, injection pressure, discharge
pressure, and compressor speed, are fed into the network, while the network outputs the mass flow rate and compressor
power. Each model comprises an input layer, a hidden layer, and an output layer. The dataset for model training consists
of randomly selected data, with 80% allocated for training and 20% for testing. During training, the data is passed
through the input layer, and the optimization algorithm is applied, after configuring the hyperparameters. The final
results are then obtained. Table 2 summarizes the artificial neural network architecture considered for this study.

Table 2: ANN Model Architecture

Parameters Values

Machine Learning Package Scikit-learn, Spyder, Python
Inputs 4

Outputs 2

Hidden Layers 1

Nodes Per Layer 45

Activation Function Rectified Linear

Optimizer Limited Memory BFGS

3.1.2 Navarro Model

The model from Navarro et al., (2013b) is a black-box model which only captures the injection mass flow rate. The
correlation for injection mass flow rate is a first-order polynomial function of evaporating mass flow rate (m,) and
injection to evaporator pressure ratio (Pin j /Pe). The model inputs are evaporating mass flow rate, injection pressure
(Pinj), and evaporating pressure (P,). The number of data points required are 13 to tune the coefficients for this model.
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There is no specific vapor injection compressor needed to run the model. However, the training data needed to train
the model, there must be at least 3 data points to curve fit the injection mass flow rate (v1;,;). The model functional
form is shown in Table 3 for injection and evaporator mass flow rate.

Table 3: Formulation for Navarro Model
Parameter Equation

Injection  mass
flow rate

) ) P\ |
minj = Ko + Klme + KZ P me
e

Evaporator mass 1, = a; + ayT, + azT. + a, T2 + asT,T. + agT? + a; T2 + agT2T, + agT,T? + a,,T2
flow rate

3.1.3 Tello-Oquendo Model

The model from Tello-Oquendo et al., (2017b) is a black-box model, which captures compressor power, total mass
flow rate, and injection mass flow rate. It follows the exact same formulation of AHRI 10 coefficient map with one
extra coefficient. The Tello-Oquendo model adds injection temperature (T} ;) as an additional term for compressor
power prediction. This model is also third-order polynomial, and it is a function of evaporating temperature,
condensing temperature and injection temperature summarized in table 4. In this formulation compressor power
prediction needs 11 data points, which results in 11 tuned coefficients from (a; — aqq). In this model, the
computational efforts are minimal and just like all other black-box models, it does not require any information about
the compressor geometry. The injection to evaporation mass flow rate ratio is a first order polynomial equation and a
function of injection to evaporating pressure ratio. Compressor geometrical description is not required for this model
as well.

Table 4: Formulation for Tello-Oquendo Model

Parameters Values
Compressor E =a + aZTe + a3Tc + a4Te2 + aSTeTc + a6Tc2 + a7Te3 + aBTezTc + a'_i)TeTc2 + alOTc3
power + a11Tinj
Evaporator Mme = ay + ayT, + asT, + a, T2 + asT, T, + agT? + a; T + agT2T, + agT,TZ + a,,T2
flowrate
Injection mass M ™
J_ .Ln] -4 +B< m])
ratio T, P,

3.1.4 Lumpkin Model

The Lumpkin model from (Lumpkin et al., 2018b) is a black-box model, which uses dimensionless groups, codified
from Buckingham-PI, for mapping compressor power consumption, injection mass flow ratio. The mapping of
compressor power output ratio and injection mass flow ratio was created as output group, and appropriate
dimensionless input groups were considered for each normalized output PI group listed in Table 5. The suction
temperature is normalized with ambient temperature and refrigerant critical temperature. The enthalpy difference
(Ahgycsn) at the compressor inlet is characterized by the enthalpy difference between measured inlet enthalpy and
saturated liquid enthalpy at the same pressure. The enthalpy difference (Ah;y ;¢ ) at the compressor injection point is
characterized by the enthalpy difference between measured injection enthalpy and saturated liquid enthalpy at the
same pressure. The theoretical maximum compressor power (W,q,) Was calculated using equation in Table 5,
assuming a power factor of 0.85, supply voltage of 206 V and the maximum current is 18 A.

To tune the coefficients from Cy — Cy, total 10 data points are required. Compared to all the models mentioned till
now, this model is more complex and the same as other black-box models, it does not require any information about
the compressor type and compressor size.
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Table 5: Formulation of Lumpkin Model

Parameters Values
N . - . C C
Injection mass flow ratio i _ < Frower ) g <Ahinj,sh> 2 (Pm,-)c3 (TM )64 (Pdis)cs
me 0 fnominal Ahinj,fg Psuc Tamb Psuc
Ahsuc,sh CE(Pcit's‘)c7(135‘uc)Cg(Tsuc)C9
Ahsuc,fg Pc‘rit Pc‘rit Tcn‘t
Compressor power ratio Wt . ( Frower >c1 (mmj)c2 (@ >c3 (Tsuc)C4 (Pdis>“
Wma_x 0 fnominal me Psuc Tumb Psuc
Ahsuc,sh CG(Pdis)(;7(Psuc)(;8 Tsuc)cg
Ahsuc,fg Pc‘rit Pc‘rit Tcrit
Maximum Compressor Power Winax = €08 (0)V3In maxAV

3.1.5 Proposed Model

The present study proposes a model for the evaluation of the vapor injection compressor performance to predict the
compressor power, total mass flow rate, and injection mass flow ratio. This model is also a black-box model in nature,
and second-order polynomial with 11 coefficients. In this model the total mass flow rate going through the condenser
() and compressor power consumption is a function of condenser pressure, evaporator pressure, and injection
pressure. The total number of coefficients for total mass flow rate and compressor power comprised of 11 coefficients
each and it require 11 data points each to tune these coefficients from (ay — aqg). For fixed speed vapor injected
compressor analysis, will require 9 data points to tune the coefficients excluding the speed terms. For injection mass
ratio, the proposed model also uses Tello-Oquendo et al., (2017b) with a modification for variable speed compressor
performance prediction as shown in Table 6.

Like all other black-box models considered, it requires 11 data points for variable speed vapor injected compressor
power and evaporator mass flow rate prediction. Additionally, the representation of the proposed model as a function
of pressures is much more universal compared with temperature-based formulations. Unlike temperatures, compressor
sees refrigerant at evaporating pressure at suction, compresses it to discharge seeing condensing pressure. The
compressor power consumption as a function of pressures is much more independent of the refrigerant and much
better representative of the compressor (Marchante-Avellaneda et al., 2023).

Table 6: Formulation for the Proposed Model

Parameters Values
Compressor Power Winap = @o + a1 B, + a3 P. + a3P? + a,P? + asw + asw?
+ a; PP, + agP,P? + agP.P? + a10Pyy;
iecti i Mini Py w
Injection Mass Ratio ot b < m}) I < act)
me e Wnom
Evaporator Flow Rate e = ag + a, P, + a,P. + azP? + a,P? + asw + agw?
+ a; PP + agP,P? + agP.P} + a1 Pin;
Mass Balance My = M, + My

3.2 Error Metric to Evaluate Model Performance

Each model is trained then evaluated for its ability to predict compressor power, evaporator, and injection mass flow
rates using the method shown graphically in Figure 1. Each model is initially trained using a training dataset
comprising 11 data points. Following the training phase, the performance of the trained model is evaluated by
comparing its predictions against the corresponding test data obtained from experiments as described in Sections 2.2.
The evaluation of model performance is quantified using the Mean Absolute Percentage Error (MAPE), which serves
as a metric to measure the accuracy and effectiveness of the models in predicting the desired outcomes,
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MAPE = @2

Ytrue,i_Ypredir:t,i

, 1
Ytrue,i ( )
where 1 is the total number of data points in the data set, i is each data point, Y;ye; and Yyreqice,; are the model

measured data value and model predicted data value for any performance parameter. The MAPE is calculated for both
the evaporator mass flow rate and injection mass ratio as well as compressor power.

[ Train the Model Parameters ]-—[ Training Data Set ]

Using Trained Parameters . ]
[ Run the Model With [ Testing Data Set

[ Record Error Metric

Error

Figure 1: Model training and evaluation methodology used in this study.

4. RESULTS
The results presented in this section show each model’s ability to predict injection mass ratio, evaporator mass flow
rate, and compressor power. The over-arching objective is a model that can predict these parameters within 5% of
experiments with as little data as possible and the goodness of each model is evaluated based on this criterion.

4.1 Compressor Power Consumption

In Figure 2, a comparative analysis of predictive models used for compressor power prediction is presented as a heat
map representing MAPE. While all the models predicted performance well, however the Proposed Model consistently
demonstrated superior predictive capability. The MAPE values associated with the Proposed Model are all lower than
1% compared to the other models, except for the scroll R410A data, highlighting its effectiveness in capturing
compressor power. The ANN model performs the next best showing low MAPE values except for the scroll R454B
data set, which shows the MAPE of 2.4%. The Oquendo model prediction is reasonably good as well, and Lumpkin
model performing the worst with the MAPE more than 1% in most of the cases. This comparative assessment
underscores the enhanced predictive capabilities of the Proposed Black Box Model, presenting it as a more promising
model. Its ability to yield more accurate predictions under 2% MAPE of compressor power holds significant
implications for optimizing compressor performance.

Power

Tello-Oquendo Data

Dardenne Data

-1.75
R:R410A Data - 0.98 -150 &
S125 &
R:R454B Data - 1.1 0.92 1.8 0.7 <
-1.00 =
S:R410A Data - 1.4 1.4 -0.75
0.50
S:R454B Data 15
, 0.25

ANN Tello-Ogq.  Lumpkin  Proposed
Models

Figure 2: Heatmap showing MAPE of model predictions of compressor power for each dataset.
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4.2 Evaporator and Injection Mass Flow Rate

Figure 3 is a heat map for evaporator mass flow rate representing the MAPE for each of the models using all the data
sets mentioned in Table 1. Results show that evaporator mass flow rate is captured well by the Proposed model except
rotary compressor R454B data with the MAPE of 2.6%. As per the model selection criteria, the MAPE for all the
models is less than 5% in evaporator mass flow rate prediction. The results for Tello-Oquendo, Navarro, and Lumpkin
are similar, since all these models are similar for predicting the evaporator mass flow rate. However, the proposed
model predicted the evaporator mass flow rate under 3% MAPE, which is better than all other models except the ANN.

In Figure 3, a comparative analysis of predictive models used for injection mass ratio prediction is presented as a heat
map representing MAPE. The injection mass ratio MAPE values for the Proposed model are lower than 2% compared
to all other models, even better than benchmark ANN model. The Lumpkin model failed to perform in predicting the
injection mass ratio. The Lumpkin model exhibits errors above 5% MAPE in injection mass ratio prediction for both
scroll and rotary compressor technologies. For injection mass ratio prediction, the lowest MAPE achieved was 0.93%
for Tello-Oquendo data set utilizing R407C by the proposed model. Navarro and Oquendo models MAPE is lower
compared to Lumpkin model. This comparison shows that the Proposed Model predicts evaporator and injection mass
flow rates better than all other models, even better than benchmark ANN model.

Evaporator Mass Flow rate Injection Mass Ratio

2.50
Tello-Oquendo Data Tello-Oquendo Data 8
2.25
Dardenne Data ~2.00 Dardenne Data 7
-1.75 @ -6 )
R:R410A Data - 0.97 1.5 1.5 1.5 1.8 = R:R410A Data - o~
w 5w
Q. O
R:R454B Data - << R:R454B Data - -4 <
= =

5:R410A Data S:R410A Data - 3.2

S:R454B Data - 5:R454B Data - 3 .7 6.1
ANN  Tello Og. Navarro Lumpkin Proposed ANN  Tello-Og. Navarre Lumpkin Proposed
Models Models

Figure 3: Heatmaps showing MAPE of model predictions of evaporator mass flow rate (left) and injection mass
ratio (right) for each dataset.

4.3 Refrigerant Flexibility Analysis

Refrigerant flexibility was assessed for both injection mass ratio and compressor power consumption. The
experimental data obtained for this study includes identical datasets for both R454B and R410A on two compressors,
a scroll and a rotary. These results were used to train each model with either R410A or R454B data and then attempt
to predict the injection mass ratio and compressor power consumption of the other refrigerant. The same training data
sets as used in the other analysis are used. The results, depicted in Figures 4, showcase the compressor power
consumption, and injection mass ratio predictions.

For compressor power consumption prediction shown in Figure 4 (left), the Proposed model exhibited the most
accurate predictions with the lowest MAPE values for both refrigerants except the ANN, but it is worth noting that
ANN model was used as a benchmark for the comparison of all models. For training with R410A and testing with
R454B, the MAPE is 1.85%, and for training with R454B and testing with R410A, the MAPE is 1.4%. The worst
performing model in evaluating the refrigerant flexibility analysis is the Lumpkin model with MAPE higher than 20%.
Similarly, in the case of injection mass ratio prediction depicted in Figure 4 (right), the Proposed model demonstrated
the lowest MAPE values among all models except the ANN, indicating predictive accuracy for both refrigerants.
Specifically, for training with R410A and testing with R454B, the MAPE is 2.84%, while for training with R454B
and testing with R410A, the MAPE is 1.87%.

Comparatively, the Lumpkin model showed significantly higher MAPE values, indicating a substantial deviation

compared to all other models and a lower level of accuracy in predicting refrigerant flexibility for both injection mass
ratio and compressor power consumption.
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These findings underscore the effectiveness of the Proposed model in accurately predicting refrigerant flexibility,
making it a valuable tool for predicting the performance of vapor-injected rotary compressors when transitioning
between different refrigerants.

20.0

B Trained: R410A (Tési;{'!: R4548) @ Trained: R410A (Tested: R454B)
1754 EEE Trained: R454B (Tested: R410A) 74 EEE Trained: R454B (Tested: R410A)
15.0 6
— 125 —_5
& #
& 100 Wa
< <
= =
75 3
5.0 2
25 1
ool B | | Bm | | B . .
ANN Tello-Oquendo Lumpkin Proposed ANN Tello-Oquendo Navarro Lumpkin Proposed
Models Models

Figure 4: Compressor Power Consumption (left) and injection mass ratio (right)

5. DISCUSSION

The Tello-Oquendo model yielded more consistent performance in predicting compressor power and mass flow rates.
The performance prediction of Tello-Oquendo is less than 3% for mass flow rates and compressor power except the
refrigerant flexibility analysis, in which the MAPE is higher than 3%. The Lumpkin model failed to demonstrate good
results in the case of injection mass ratio for rotary compressor R410A and R454B data exceeding 5% MAPE. In
comparison to Lumpkin model, Navarro model manages to predict MAPE less than 5% for injection mass ratio.
Overall, the Proposed model surpassed all other models by achieving a MAPE less than 2% for all three key output
parameters: compressor power, evaporator mass flow rate, and injection mass ratio. Additionally, it outperformed
other models in refrigerant flexibility analysis except ANN, which is used as a benchmark model.

The Lumpkin model is a complex combination of normalized inputs with a total number of 10 coefficients for both
mass flow rate and power prediction. It requires 10 training data points for each model along with the calculation of
thermophysical properties such as enthalpies. However, with all this added complexity, it failed to predict injection
mass ratio with MAPE less than 5%. Besides that, it faded to capture the refrigerant flexibility analysis as well. The
Tello-Oquendo model is 11 coefficient model for each compressor power and evaporator mass flow rate and is much
better at predicting these output parameters. However, a notable limitation of the Tello-Oquendo model is its inability
to capture variable speed data. The ANN model was the best performing since that was the baseline model and has
much more accurate prediction for both mass flow rate and compressor power. The Proposed model outperformed all
other models in predicting all output parameters. It has 11 coefficients and can capture variable speed data with 11
data points. In general, black-box models are not capable of refrigerant flexibility analysis since it doesn’t have any
physics or geometrical information, however, the performance of the Proposed model was similar to the ANN model
in refrigerant flexibility analysis, exhibiting MAPE below 5% for both compressor power and injection mass ratio.

6. CONCLUSION
This study presents an analysis of the predictive capabilities of 4 black box models for vapor-injected compressors
from literature and a newly proposed model. Each model is evaluated in its ability to predict compressor power,
evaporator mass flow rate, and injection mass ratio. Additionally, this study also evaluates the models ability to predict
the performance of a similar refrigerant when trained with data on a different refrigerant.

Notably, the proposed model emerges as a novel contribution, utilizing compressor suction pressure, discharge
pressure, and injection pressure as input variables to establish an exceptionally effective predictive framework for
compressor performance prediction. Quantitative evaluation, employing MAPE, shows the consistent performance of
the proposed model across various datasets, notably surpassing the legacy models, like the Navarro (Navarro et al.,
2013b), Tello-Oquendo (Tello-Oquendo et al., 2017b), and the Lumpkin Models (Lumpkin et al., 2018b).
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In the case of compressor power prediction, the proposed model with same number of coefficients predicted the
performance much better than all other models for both fixed and variable speed data. In comparison to the proposed
model, the Tello-Oquendo model cannot capture variable speed since it does not have variable speed term in it and
secondly, proposed model outperformed it for fixed speed data as well. The Lumpkin model is a complex combination
of normalized inputs requiring 10 data points to tune the coefficients, however it failed to predict the performance
better than all other models. Furthermore, in terms of evaporator mass flow rate prediction, the proposed model
consistently proves its significance, achieving the lowest MAPE values across all the datasets, affirming its accuracy.

Additionally, the assessment of refrigerant flexibility for injection mass ratio and compressor power consumption is
critical. The Proposed model performs better than other models, showcasing minimum MAPE for both refrigerants.
For instance, in compressor power prediction, the Proposed model obtained a MAPE of 1.85% (training with R410A
and testing with R454B) and 1.4% (training with R454B and testing with R410A). In contrast, the Lumpkin Model
displayed considerably higher MAPE values, indicating its diminished accuracy.

7. MODEL LIMITATIONS AND FUTURE OUTLOOK

The models investigated in this work have limitations stemming from performance prediction. The model with better
prediction capabilities should require minimal data. To this end, Proposed model require the same amount of data as
any other black box model i.e. 11 data points but with relatively better performance and can also capture variable
speed data. Analogous to typical black box models, it does not include geometrical features or fundamental physics
equations in the analysis, rendering it bad in extrapolation and is sensitive to the type of training data. The proposed
model does not have any fundamental physics equations, which is why the MAPE for refrigerant flexibility analysis
is also high but relatively better than any other black box model studied here.

Future work based on the results presented herein will be developing a vapor injection compressor model, that is
inspired from physical compression phenomena such as polytropic process, having the capability to capture
interpolation, extrapolation and refrigerant flexibility analysis for multiple compressor technologies i.e., rotary, scroll
and spool compressors. Furthermore, this future model will necessitate minimal data points for training while adhering
to the same methodological approach employed in this study to facilitate comprehensive comparisons.

NOMENCLATURE
Mip Mass flow rate through the injection line [kals]
My Mass flow rate at the compressor discharge [ka/s]
Mgyc Mass flow rate at the compressor suction [kals]
m Mass flow rate through evaporator [kals]
Peond Condensing pressure [kPa]
Dinj Injection Pressure [kPa]
Devap Evaporating Pressure [kPa]
Derit Critical Pressure [kPa]
T, Evaporating Temperature [°C]
T, Condensing temperature [°C]
Tinj Injection temperature [°C]
frominat  Nominal frequency [Hz]
Enthalpy difference [kJ/kg]

Wmax Maximum theoretical work [kW]
Wt Actual work [kW]
I Current [A]
AV Potential difference [volt]

Abbreviations
ASHRAE  American Society of Heating, Refrigeration, and Air Conditioning Engineers

AHRI Air-Conditioning, Heating, and Refrigeration Institute
MAPE Mean Absolute Percentage Error
CoP Coefficient of performance
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Greek Symbols
w Compressor speed [rpm]
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