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ABSTRACT 
 

Accurate compressor performance prediction is a key tool in heat pump and refrigeration system modeling and design. 
Correlations applicable to a variety of refrigerant types are rare and would be valuable for multi-refrigerant screenings 
and mixture development. This work presents correlations for isentropic and volumetric efficiency and heat losses of 
reciprocating compressors for synthetic and hydrocarbon refrigerants and mixtures. A refrigerant-specific toggle term 
was included in the isentropic efficiency correlation to distinguish between refrigerant types. Equations were fitted to 
365 experimental data points across two compressors, 7 pure fluids and 10 mixtures thereof, with pressure ratios 
ranging from 2 to 18, suction pressures from 50 to 750 kPa, isentropic efficiencies from 0.30 to 0.70, volumetric 
efficiencies from 0.35 to 0.90, and heat losses from 0.1 to 0.65 of the compressor power draw. The overall isentropic 
efficiency (referred to throughout the paper as simply “isentropic efficiency”) correlation has three input parameters 
and predicts all data with an average deviation of 0.012. The volumetric efficiency correlation has only one input 
parameter and predicts all data with 0.022 average absolute error. The heat loss correlation has two input parameters 
and an average deviation of 0.034. All three correlations are valid over the entire experimental range for all 
fluid/compressor combinations tested. 
 
Keywords: compressor performance, correlations, synthetic, hydrocarbons 
 

1. INTRODUCTION 
 
Refrigerant mixtures are a key optimization variable in high-temperature heat pumps. For realistic screening studies, 
the compressor as a key component must be accurately modeled for the range of considered refrigerants and mixtures. 
Many previous studies have attempted to characterize compressor performance (e.g., volumetric efficiency 
𝜂𝜂𝑣𝑣𝑣𝑣𝑣𝑣 , overall isentropic efficiency 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 , heat loss coefficient 𝜁𝜁𝑐𝑐𝑐𝑐 ) across operating conditions (e.g., suction and 
discharge pressure, superheat), but only a few evaluate a variety of different refrigerants on the same compressor. 
Table 1 shows an overview of previously developed correlations in the open literature, most of which are fitted to 
specific refrigerants. Therefore, a screening study across refrigerants is not supported, indicating the need for an 
equation which is adaptable or simply agnostic to the fluid (but validated for several). Only two studies in Table 1 
propose correlations for both synthetic and natural refrigerants. Roskosch et al. (2017) achieved this by providing 
refrigerant dependent coefficients which were validated also for fluids not included in the fitting procedure. Navarro-
Peris et al. (2013) involved six different compressors, one with two different refrigerants tested. However, coefficients 
must be refitted for each refrigerant, making the correlation unsuitable for a multi-refrigerant screening. 
Many approaches based on artificial neural networks, including Belman-Flores et al. (2015), Penz et al. (2012), Sanaye 
et al. (2011), and Yu et al. (2007), have achieved lower error for specific conditions (one compressor and one 
refrigerant). Still, the model's complexity and specificity make them unsuitable for this application.  
The present study builds on Brendel et al. (2023) (with 200 data points) but is now based on an enlarged experimental 
dataset of 365 data points across two compressors, 7 pure fluids and 10 mixtures. Therefore, the correlations can now 
cover synthetic and hydrocarbon refrigerants. 
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Table 1: Previous correlations and their performance metrics published in the literature. 

Literature 
reference 

𝜼𝜼𝒐𝒐𝒐𝒐𝒐𝒐 error 
(relative) 

𝜼𝜼𝒗𝒗𝒗𝒗𝒗𝒗 error 
(relative) 

Data 
points 

Number of 
compressors 

Number of 
fluids* 

𝜼𝜼𝒐𝒐𝒐𝒐𝒐𝒐 inputs, 
coefficients 

𝜼𝜼𝒗𝒗𝒗𝒗𝒗𝒗 inputs, 
coefficients 

Notes 

Navarro et 
al. (2007a) 

Max 5% Max 5% 85 4 reciprocating 1 refrigerant 
 

10, - -  

Navarro et 
al. (2007b) 

Max 5% Max 5% - 4 reciprocating 1 synthetic 
1 natural 

3, - - Refit for each 
refrigerant 

Navarro-
Peris et al. 
(2013) 

Max 5% Max 
approx. 7% 

100 1 scroll 
5 reciprocating 
 

1 synthetic 
1 natural 

3, 8 5, - Builds on 
Pierre’s 
correlations 
(Pierre, 1982) 

Roskosch et 
al. (2017) 

Avg 3% 
Max 6% 

Avg 2.3% 
Max 6% 

63 1 reciprocating 2 synthetic 
4 natural 

8, 4 8, 4  

Lumpkin et 
al. (2018) 

Max 0.2% Max 0.1% 43 1 reciprocating 1 synthetic 
 

2, 10 - Explored 
injection types, 
𝜁𝜁𝑐𝑐𝑐𝑐 correlation 
with 11% error 

Brendel et 
al. (2023) 

Avg 3.0% 
Max 21% 

Avg 3.0% 
Max 14% 

200 1 reciprocating 29 synthetic 
 

2, 6 1, 2 Expanded for 
this study 

 
 

2. AVAILABLE EXPERIMENTAL DATA 
 
2.1 Experimental Test Bench 
Figure 1 illustrates the schematic of the laboratory high-temperature heat pump used to generate three distinct datasets. 
A mass flow meter was installed in the liquid line, and an oil separator was directly downstream of the compressor. 
Thermocouples and pressure transducers were installed close to the compressor ports in insulated connecting pipes, 
but the compressor itself was not insulated. The compressor suction and discharge pressures were controlled by 
changing the heat sink and source temperature. The superheat was controlled using the expansion valve. The internal 
heat exchanger (IHX) was deactivated for all tests using a three-way valve. More detailed descriptions of the test setup 
can be found in Brendel et al. (2023) and Arpagaus et al. (2018).  
Tests were conducted with two reciprocating compressors, called compressors A and B in the following. The 
compressors had similar outer dimensions and swept volumes of 0.158 and 0.153 liters, respectively. Tests with 
synthetic refrigerants were conducted with the polyester oil Reniso Triton SE 170, while tests with hydrocarbon 
refrigerant were performed with the polyalkylene glycol oil Reniso LPG 150. More information can be found in Fuchs 
(2023a) and Fuchs (2023b). 
 

 
Figure 1: Schematic of experimental test setup. 
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2.2 Refrigerants 
The refrigerants in this study can be classified into two families: hydrocarbon and synthetic. These refrigerant types 
perform differently, largely due to differing densities at equal pressures: the hydrocarbon refrigerants studied here 
have molecular masses in the range of 44 to 72 g/mol, less than half the values of synthetics at 102 to 164 g/mol 
(except R32, which was used at <20% mass concentration only). 
 
2.3 Database 
The data is categorized into three datasets.  

- Dataset 1 is the dataset used in Brendel et al. (2023), consisting of synthetic refrigerants tested with 
compressor A.  

- Dataset 2 consists of synthetic refrigerants tested with compressor B. 
- Dataset 3 consists of hydrocarbon refrigerants tested on compressor B.  

 
The datasets are shown in Table 2 with ranges of operating conditions for each relevant variable. From 368 total data 
points, three were removed: two for having suction pressures above 750 kPa and one for a pressure ratio (𝑃𝑃𝑟𝑟) of 21, 
leaving the new maximum 𝑃𝑃𝑟𝑟 at 18. Each steady-state data point was averaged over 10 minutes of operation. For 60 
data points, all measurements were steady except the discharge temperature. These data points were excluded from 
the design and evaluation of the heat loss correlation but were still used for isentropic and volumetric efficiency 
correlations. Table 3 shows the specific refrigerants and mixtures tested in each dataset, with the numbers on the right 
indicating how many unique mixture ratios were tested. 
 

Table 2: Evaluated datasets with ranges of important parameters. 
Dataset Number of 

data points 
𝑷𝑷𝒔𝒔 

[kPa] 
𝑷𝑷𝒓𝒓 
[-] 

𝑻𝑻𝒔𝒔 
[oC] 

𝑻𝑻𝒔𝒔𝒔𝒔 
[K] 

𝒅𝒅𝒔𝒔 
[kg/m3] 

𝜼𝜼𝒐𝒐𝒐𝒐𝒐𝒐 
[-] 

𝜼𝜼𝒗𝒗𝒗𝒗𝒗𝒗 
[-] 

𝜻𝜻𝒄𝒄𝒄𝒄 
[-] 

1 256 41-745 2-18 3-104 5-52 3-35 0.30-0.68 0.37-0.91 0.09-0.62 
2 48 156-675 3-10 49-86 16-52 8-27 0.57-0.66 0.63-0.84 0.13-0.36 
3 61 143-701 2-12 19-87 10-53 3-13 0.33-0.68 0.47-0.89 0.11-0.29 

 
 

Table 3: Tested refrigerants. The right column indicates the number of unique mass compositions tested. 
Dataset 1 
R-1336mzz(Z)  
R-1233zd(E)  
R-1224yd(Z)  
R-1234yf  
R-1234yf /1336mzz(Z) 6 
R-1234yf /1233zd(E) 3 
R-32/1224yd(Z)  5 
R-32/1224yd(Z)/1336mzz(Z)  1 
R-32/1234yf/1224yd(Z) 8 
R-32/1234yf/1336mzz(Z)  2 
Dataset 2 
R-1224yd(Z)  
R-134a  
R-1234yf/1224yd(Z)  3 
R-1234yf/1224yd(Z)/1336mzz(Z)  2 
Dataset 3 
R-600  
R-290/600  11 
R-290/601  8 
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3. CORRELATION FOR ISENTROPIC EFFICIENCY 
 
3.1 Correlation Development 
The overall isentropic efficiency 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 is defined as the isentropic compression power for the measured mass flow rate 
𝑚̇𝑚(ℎ2𝑠𝑠 − ℎ1) devided by the compressor power draw 𝑊̇𝑊: 
 

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑚𝑚 ∙̇ (ℎ2𝑠𝑠 − ℎ1)

𝑊̇𝑊
(1) 

 
The correlation developed by Brendel et al. (2023), Equation 2 below (hereafter referred to as the “London 
Correlation”) served as the starting point for this investigation because it was able to predict efficiencies for a large 
number of different synthetic refrigerants and their mixtures. 
 

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 −
0.6

(𝑃𝑃𝑟𝑟 − 𝑎𝑎1)𝑎𝑎2∙𝑃𝑃𝑠𝑠 − 𝑎𝑎3 ∙ 𝑃𝑃𝑟𝑟1.8 (2)  

 
𝑃𝑃𝑟𝑟 represents the pressure ratio and 𝑃𝑃𝑠𝑠 the suction pressure. The coefficient 𝑎𝑎0 sets an upper bound on the efficiency 
while the other terms subtract from this value. The second term defines the behavior for low pressure ratios, and the 
third term is for high pressure ratios. Higher suction pressures increase the efficiency as experimentally determined. 
This equation was originally fitted to Dataset 1 and was tested for Dataset 2 and 3 as they became available. It showed 
good results for Dataset 2, but significant errors occurred for Dataset 3 especially at high pressure ratios.  
Thus, a “toggle term” 𝑅𝑅𝑥𝑥 was introduced to account for the refrigerant type, taking on a different value for each 
refrigerant family (syn: synthetic, HC: hydrocarbon). This term replaced 1.8 in the London correlation to correct for 
the high-𝑃𝑃𝑟𝑟 outliers. This change causes steep drop-offs (see blue lines in Figure 2). Unfortunately, the trend is based 
on only a few data points. Another idea was using the suction density instead of the suction pressure in the denominator 
of the second term and moving 𝑅𝑅𝑥𝑥 in place of London’s 𝑎𝑎2, but the maximum and average errors of the correlation 
could not be improved. Moreover, unlike suction density, suction pressure is a refrigerant-independent property 
making it easier to apply in some models. 
 
The suction superheat 𝑇𝑇𝑠𝑠ℎ  was identified in Figure 3 as a relevant input not included in the London equation. Thus, 
the linear correction term 𝑎𝑎3 ∙ 𝑇𝑇𝑠𝑠ℎ was added to the proposed correlation, reducing errors by about half. Because the 
𝑎𝑎1 term of the London equation is orders of magnitude below the value of 𝑃𝑃𝑟𝑟 and increased the uncertainty of the 
coefficient solver, it was removed with no effect on the average and maximum errors. A static offset is visible for 
compressor B with synthetics, but it is small and not present for compressor B with hydrocarbons, so it was not 
addressed. Hence, the final form of the proposed correlation is: 
 

𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 −
𝑎𝑎1

𝑃𝑃𝑟𝑟
𝑎𝑎4∙𝑃𝑃𝑠𝑠

− 𝑎𝑎2 ∙ 𝑃𝑃𝑟𝑟
𝑅𝑅𝑥𝑥 + 𝑎𝑎3 ∙ 𝑇𝑇𝑠𝑠ℎ  (3) 

 
The values of the coefficients in this equation are shown in Table 4, along with the coefficients for later correlations. 
This equation was fitted for data with suction pressures in a range of 50 to 750 kPa, a pressure ratio range of 2 to 18 
for synthetic and 2 to 15 for hydrocarbon refrigerants, and a suction superheat of 5 to 55 K. The trends of the correlation 
at 15 K superheat for fixed pressures of 150, 300, and 600 kPa are shown in Figure 2. An additional line (dashed) is 
plotted with 35 K superheat to show its effect. It should be noted that hydrocarbons in experimental data peak slightly 
higher than synthetics for each fixed-pressure curve, but the equation could not model this behavior without another 
refrigerant-specific term. 
 

Table 4: Coefficients for proposed correlations. 
 Overall isentropic  

efficiency 
Volumetric 
efficiency 

Heat loss 
coefficient 

Equation Equation (3) Equation (5) Equation (7) 
Coefficient 𝑎𝑎0 

[-] 
𝑎𝑎1 
[-] 

𝑎𝑎2 
[-] 

𝑎𝑎3 
[K-1] 

𝑎𝑎4 
[kPa-1] 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠 
[-] 

𝑅𝑅𝐻𝐻𝐻𝐻  
[-] 

𝑏𝑏0 
[-] 

𝑏𝑏1 
[-] 

𝑐𝑐0 
[-] 

𝑐𝑐1 
[-] 

Value 0.6462 0.5798 0.0012 0.0012 0.0077 1.712 2.047 0.0824 0.7277 0.1062 0.6463 



 
 1313 Page 5 

 

27th International Compressor Engineering Conference at Purdue, July 15 – 18, 2024 

  
Figure 2: 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 correlation vs. 𝑃𝑃𝑟𝑟 at fixed pressures 

 

 
Figure 3: 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 correlation error vs. suction superheat temperature 

 
  

3.2 Correlation Performance 
The performance of all investigated correlation equations was evaluated mainly by average and maximum deviation 
due to their intuitive meaning and relevance to system modeling applications. Figure 4 compares the performance of 
the London correlation (left) to the proposed correlation (right), with upper charts illustrating absolute error values as 
a function of the data point index number (chronological order of testing) and lower charts showing predicted 
efficiency as a function of measured efficiency with 𝑟𝑟2 values included.  
The London correlation predicts hydrocarbons particularly poorly. The proposed correlation corrects this by reducing 
the average error from 0.018 to 0.012 and the maximum error from 0.105 to 0.058. The first row of Table 5 contains 
the average and maximum absolute error values for the proposed isentropic efficiency correlation for all three datasets 
and each dataset. 
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Figure 4: Absolute error of 𝜂𝜂ois for the London correlation and the proposed correlation 

 
Table 5: Absolute errors of the proposed correlations for all data and separate datasets. The first number in each cell 

indicates the average absolute error, and the number in parentheses shows the maximum error. 
 All data Dataset 1 Dataset 2 Dataset 3 
Overall isentropic efficiency 0.012 (0.058) 0.009 (0.041) 0.027 (0.042) 0.013 (0.058) 
Volumetric efficiency 0.022 (0.079) 0.012 (0.058) 0.025 (0.038) 0.013 (0.054) 
Heat Loss 0.036 (0.238) 0.037 (0.238) 0.033 (0.075) 0.038 (0.081) 

 
4. CORRELATION FOR VOLUMETRIC EFFICIENCY 

 
The volumetric efficiency 𝜂𝜂𝑣𝑣𝑣𝑣𝑣𝑣  is defined as the actual mass flow rate over the theoretical one given the suction density 
𝜌𝜌, the compressor frequency 𝑓𝑓 and the swept volume of all cylinders combined 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : 

𝜂𝜂𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑚̇𝑚

𝜌𝜌 ∙ 𝑓𝑓 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(4) 

 
Despite being fitted only for Dataset 1, the London correlation for volumetric efficiency performs well for all datasets. 
There are some outliers but no clear dependencies. Refitting was deemed unnecessary as the decrease in the average 
error is small (0.001), and the maximum error increases by 0.008. The performance of the London volumetric 
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efficiency equation (Equation 4) on the new datasets is graphed in Figure 5. It is repeated here for completeness, and 
the coefficients are presented in Table 4: 
 

𝜂𝜂𝑣𝑣𝑣𝑣𝑣𝑣 = 1− 𝑏𝑏0 ∙ (𝑃𝑃𝑟𝑟 − 1)𝑏𝑏1  (5) 
 
This equation was fitted for pressure ratios from 2 to 18, with overall and per-dataset average (and maximum) absolute 
errors detailed in Table 5. 

 
Figure 5: Volumetric efficiency 𝜂𝜂vol performance for all datasets 

 
5. CORRELATION FOR HEAT LOSS 

 
5.1 Correlation Development  
The heat loss factor 𝜁𝜁𝑐𝑐𝑐𝑐 is defined as the heat losses 𝑄̇𝑄𝑙𝑙𝑙𝑙 as calculated from an energy balance relative to the power 
draw of the compressor 𝑊̇𝑊: 

𝜁𝜁𝑐𝑐𝑐𝑐 =
𝑄̇𝑄𝑙𝑙𝑙𝑙
𝑊̇𝑊

=
𝑊̇𝑊 −𝑚𝑚 ∙̇ (ℎ2 − ℎ1)

𝑊̇𝑊
(6) 

 
As mentioned in Section 2.3, some data points with unsteady discharge temperatures were not considered for this 
section of the investigation. Even after filtering, initial evaluations did not reveal strong correlations between any 
singular independent variable and heat loss, so more complex methods were employed. After filtering by suction 
temperature, some linear trends appeared relative to suction pressure.  
Machine learning symbolic regression genetic algorithm gplearn (Stephens, 2016) was used to identify candidate 
equation forms and important variables. Many candidate equations were generated with varying complexity, 
performance, and physical sensibility. To narrow the field, the algorithm was tuned to minimize input parameters and 
total terms in the equations in addition to its default minimization of mean absolute error. Manually, equations with 
large growth/decay trends just outside the experimental range were pruned, as well as those with few major outliers.  
Chiefly, this investigation confirmed that suction temperature and pressure were the best predictors of heat loss for 
this dataset, usually with pressure in the numerator and temperature in the denominator of a fraction. Exploration of 
error correction terms for equations with these two parameters suggested pressure ratio as a possible additional input. 
Still, no equation forms were developed with lower mean or maximum errors than the final equation. To cap output 
values at 1, the equation was constrained to the form 1 – (1/x), and after coefficients were rearranged, the final 
proposed equation took the following form: 
 

𝜁𝜁𝑐𝑐𝑐𝑐 = 1−
𝑐𝑐0

1 + 𝑐𝑐1 �
𝑇𝑇𝑠𝑠
𝑃𝑃𝑠𝑠
�

(7) 
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𝑇𝑇𝑠𝑠 is the suction temperature in °C, and the equation was fitted for values from 5 to 105 ˚C and suction pressures from 
50 to 750 kPa. As with the previous correlations, its coefficient values are found in Table 4 and its error metrics in 
Table 5. In Figure 6, five curves of heat loss vs suction temperature are color-coded by suction pressure. 

      

  
Figure 6: Heat loss ζco correlation representations in 2D (left) and 3D (right).  

 
5.2 Correlation Performance 
Figure 7 shows the absolute errors of the heat loss correlation vs. data point index number (left) and the measured 
value vs. predicted value (right). It shows that most points fall within ±20% despite the strongest outliers reaching a 
53% maximum deviation. 
 

 
Figure 7: Absolute error of heat loss 𝜁𝜁co for each dataset 

 
 

6. CONCLUSIONS 
 
This study compared and correlated data across two compressors and various refrigerants to correlate overall isentropic 
and volumetric efficiencies and the heat loss coefficient of a compressor with simple-to-use equations with the fewest 
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possible input terms. The total number of data points for the final correlation equation fitting was 365, including 7 
pure refrigerants and 49 total ratios of 10 different mixtures. The overall isentropic efficiency equation has 6 
coefficients and 3 inputs (i.e., suction pressure, pressure ratio, and suction superheat). It was fitted with data 
considering suction pressures of 50 to 750 kPa, pressure ratios of 2 to 18 for synthetic and 2 to 15 for hydrocarbon 
refrigerants, and a suction superheat of 5 to 55 K. The equation requires a refrigerant “toggle term” for good results 
with synthetic and hydrocarbon (natural) refrigerants, predicting across all datasets with 0.012 average deviation and 
0.058 maximum deviation. The volumetric efficiency correlation developed by Brendel et al. (2023) was verified for 
the additional refrigerants and compressor, showing a mean absolute error of 0.022 with a maximum of 0.079 for 
pressure ratios from 2 to 18. A heat loss correlation was developed with 2 input parameters (i.e., 5 to 105 ˚C suction 
temperature and 50 to 750 kPa suction pressure) and 2 coefficients, approximating the heat loss coefficient with 0.036 
mean and 0.238 maximum errors. The refrigerant “toggle term” in the equation for the isentropic efficiency alludes to 
the possibility of building one general correlation for yet more refrigerants or compressor types. 
 

NOMENCLATURE 
 
P Pressure (kPa or unitless for Pr)  
d Density (kg/m3)  
T Temperature (˚C)  
a, b, c, R Coefficients (varying) 
𝑊̇𝑊  Power draw (kW) 
𝑚̇𝑚  Mass flow rate kg/s 
𝑉𝑉  Volume (m3) 

𝜂𝜂, 𝜁𝜁   Performance metrics (-) 
 
Subscript   
r ratio 
s          suction 
2𝑠𝑠           statepoint assuming an isentropic process 
d          discharge 
sh          superheat  
number          coefficient numbering 
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