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ABSTRACT 
 

In the race to fight climate change and live sustainably, heat pumps are becoming increasingly popular due to their 

ability to efficiently deliver heat using electricity. However, heat pump performance degrades at low ambient 

conditions, making implementation challenging in very cold climates. The introduction of vapor injection (VI) has 

been seen in experimental research to improve capacity and coefficient of performance (COP), especially at low 

ambient conditions with heat pumps. While the performance of such compressors is heavily researched, the industry 

still has no standardized practices for characterizing their performance. Currently, there are standard practices for 

testing VI compressors according to ASHRAE 23 and EN 13771 but rating standards do not provide specific guidance 

on the selection of test points and the fitting of data. Empirical models, such as AHRI Standard 540’s 10-coefficient 

model, exist for fitting the data of non-VI compressors, but there is no equivalent model established for VI 

compressors. In order to incorporate the effects of additional varying parameters such as injection pressure, 

compressor frequency, superheat, and ambient temperature, new techniques for sampling and fitting data will be 

necessary since a fully empirical polynomial approach would require far too many tests and variables. This paper 

reviews the current practices/methods for compressor test sampling and performance mapping in academia for both 

VI and non-VI compressors. Accurate and reliable compressor performance mapping for VI will be important for the 

design and implementation of such compressors in HVAC equipment in the coming years. The authors are engaged 

in a multi-year research program funded by the Department of Energy and future work will include the construction 

of a compressor test stand that will be used to evaluate best practices for testing and characterizing VI compressor 

performance. 

 

1. INTRODUCTION 
 

Manufacturers have growing interest in the realm of vapor injection (VI) as the benefits from this technology are 

becoming clear from literature. Climate change has pushed heat pumps to be designed for colder and colder 

temperatures. This is where the addition of VI shines in its ability to boost the performance of such heat pumps. With 

conventional compressors, manufacturers follow AHRI Standard 540 (and/or similar international standards) to test 

compressors and produce coefficients for a standard 10-coefficient polynomial that estimates power and flow rate 

(and current and capacity) as functions of saturated suction and discharge temperatures. This model is fully empirical 

meaning the fitted coefficients and the form of equations (full third order polynomial with interactions) have no 

physical basis; it can produce errors in excess of 10% within the tested domain (Aute et al., 2015), but can result in 

much greater errors when extrapolating beyond. Currently, no industry standard exists for vapor injected compressors, 

which is a critical barrier to the design and implementation of such compressors in systems.  

 

A model for VI compressors must include injection pressure as an independent variable but should also ideally 

consider additional variables including compressor frequency, superheat, and ambient temperature, all of which 

influence performance but are overlooked by the current method. If the current methodology were extended, the 

inclusion of these additional parameters would result in hundreds of coefficients and test points, making it practically 

infeasible. The desired solution should have high accuracy while minimizing the testing burden and incorporating 

additional independent variables including injection pressure, frequency, superheat, and ambient temperature. The 

ability to accurately extrapolate performance beyond the test domain and apply it to multiple refrigerants is also highly 

valuable to heat pump designers. This paper examines methods for sampling and mapping compressor performance 

for both VI and non-VI compressors in the search for a preferred method to meet industry needs. 
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2. SAMPLING METHODS 
 

Development of models that accurately predict performance requires collection of experimental observations across 

the full domain of operating conditions. While AHRI Standard 540 provides a polynomial format for fitting data, it 

sets no requirements for the number and distribution of test points. Aute et al. (2015) surveyed six manufacturers and 

found that most used 14 or more test points, which were shown to produce accurate maps relative to comprehensive 

datasets with over 600 test points. OTS conducted a similar survey in 2024 and found again that most manufacturers 

were collecting sufficient test data, but like Aute, learned that a small minority collected less than 10 test points per 

compressor, which could potentially lead to overfitting errors with a 10-coefficient model. Furthermore, manufacturers 

testing variable-speed VI compressors reported requiring 108-260 test points. 

 

The design of experiments (DOE) plays a key role in determining the accuracy of a model and minimizing testing 

burden. Uniform grid-based sampling and traditional DOE methods such as Box-Behnken design, central composite 

design, and full- and fractional-factorial design are commonly used by industry, but they can still require a large testing 

burden and cannot be easily applied to non-rectangular domains. For example, a factorial design requiring three points 

per parameter would still require 34=81 tests when including suction, discharge, injection pressure as well as 

frequency. Adding superheat/suction density and ambient temperature would require an extremely burdensome 729 

tests.  

 

Aute et al. (2015) established the “polynomial design of experiments” (PDOE) method using clustering algorithms to 

identify uniformly distributed test points within the non-rectangular design space of a compressor envelope. Christ et 

al. (2023) extended this work with the scaling polytope design of experiments (SP-DOE) as a similar method for 

identifying test points in a non-rectangular design space using clustering. Marchante-Avellaneda et al. (2023) used 

D-optimal designs to demonstrate that accurate predictions could be made with less samples and correlations with less 

terms: as few as 6 test points were needed for a correlation with only 4 terms to achieve comparable accuracy.  Lee et 

al. (2022) improved mass flow rate (MFR) prediction using a “two-point prediction method”. Aute et al. (2015) states 

“for most compressors, the high errors occur in the region of the envelope with low suction and low discharge dew 

point temperatures.” Lee’s approach separates the model into two regions, therefore, reducing the error caused by 

extreme temperature differences in the envelope. By assigning reference points to predict condensing temperatures 

between 25 to 45 °C and 50 to 60 °C, Lee was able to improve MFR prediction from 34% within 5% error to 57% 

within 5% error.  

 

While thoughtful DOE has been clearly demonstrated to improve model predictions and/or minimize compressor 

testing burden, it should also be clear that the form of the equations plays an even more critical role. The AHRI 10-

coefficient polynomial has been successful in accurately predicting fixed-speed non-VI performance, however this 

method cannot be practically expanded to incorporate more variables. Cambio (2016) extended the logic of the 10-

coefficient model to include injection pressure using 23-coefficients. This approach would obviously be impractical 

when adding frequency, superheat, and ambient temperature to create 262 terms.  It is therefore necessary to look to 

different formulations when seeking to expand the capabilities of compressor maps to meet industry needs.  

 

3. NON-VI MAPS 
 

AHRI 540’s 10-coefficient polynomial has been the standard for modeling fixed speed, non-VI compressors. This is 

a simple, empirical-based model that is reasonably accurate. Aute et al. (2015) conducted an analysis comparing this 

model with four other proposed models taken from the literature which showed that these models did not improve on 

the 10-coefficient model in general. While the generally robust 10-coefficient model has not significantly 

outperformed other physics-based and empirical models when fitted to sufficient test data, it does not account for 

ambient temperature or superheat, which is a major limitation. Aiding a model with physics-informed parameters 

should help to reduce the amount of tests required to model a compressor and may even extend the amount of 

refrigerants and compressors that one model can predict. In this sense, semi-empirical models may have the best 

advantages to achieve this. The landscape of written literature in this topic further supports this concept. A summary 

of the performance of such models can be found in Table 1. 

 

Dabiri and Rice (1981) explored the effects of superheat on MFR using simple correction factor relations on existing 

manufacturing maps for previously studied compressors. Power was corrected on the isentropic efficiency assuming 
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it does not depend on superheat. Oil fraction and ambient temperature were also identified as parameters affecting 

compressor performance where the author concludes ambient temperature may still have a factor in the differences 

between their superheat corrected model and the experimental data. Averaging amongst the four datasets, the MFR 

deviates by 4.9% from the experimental data compared to the corrected model, which is an improvement over the 

original maps deviation of 7.1%. However, in terms of power, the corrected model deviates 5.3% versus 4.7% for the 

original model. Aute et al. (2015) also compared the effect of superheat from the same four datasets comparing the 

MFR and power of the AHRI model against the physics-based models. They found 6% error for mass flow predictions 

on the AHRI model while the physics-based models had 3% error. This makes sense considering the physics-based 

models account for suction density which is affected by superheat. Surprisingly, the 10-coefficient model did better 

in predicting power for different superheat cases than the physics-based models. In both cases (Aute et al., 2015; 

Dabiri and Rice, 1981), the new models were able to improve MFR predictions but performed worse for power.  

 

Marchante-Avellaneda et al. (2023) explored the use of an empirical model with less terms than the AHRI model. 

They found that correlations with as little as three terms can produce very good results in predicting MFR and power. 

Overall, the correlation with six terms using the temperature “domain” (correlation 3) proved to have the best accuracy 

for mass flow while the correlation with six terms using the pressure “domain” (correlation 2) had the best accuracy 

for power prediction. While correlation 3 had the best result for mass flow prediction, the authors recommend using 

correlation 2 as it has the best compromise between experimental cost and accuracy for mass flow and power. 

Additionally, the authors show that use of pressure domain variables provide a more linear relation to the mass flow 

and power, which the authors allude may be used more universally with other refrigerants. Interestingly, the authors 

state that superheat does have a significant effect on compressor and volumetric efficiencies over a wide range of 

operating conditions but does not affect the power consumption. This conclusion is supported by Aute et al. (2015) 

and Dabiri and Rice (1981) and may suggest that power consumption is offset by some other mechanism (possibly 

lower MFR) even though it is seen to affect compressor efficiency, which in turn, should intuitively affect the power. 

Regression analysis from Marchante-Avellaneda et al. (2023) showed statistical significance for all coefficients of 

their correlations.  

 

Winandy et al. (2022) developed a physics-based compressor model that predicted MFR and discharge temperature 

based on the swept volume and local heat transfer coefficients surrounding the compressor. Compressor power is also 

modeled based on the compressor volume ratio, a compressor power loss term and the power coefficient. This resulted 

in a good fit to the experimental data, having maximum percent errors of 3.5% for mass flow, 3% for power and 

maximum absolute error of 5K for the discharge temperature. However, this requires intimate knowledge of the 

compressor geometry, which will be undesirable for compressor manufacturers as such data may be deemed 

proprietary information.    

 

A more exciting type of modeling that has seldom been researched is the use of artificial neural networks (ANN) to 

obtain models for compressors. The recent explosion of the use of AI has become more and more relevant in many 

applications and as the technology to train AI has gotten better, its potential for modeling compressors cannot be 

ignored. Ma et al. (2020) has explored the use of such machine learning techniques in three different compressors 

types (refer to Table 1). They were able to achieve slightly better predictions with the ANN with one less sample 

training the model against the 10-coefficient model using 11 samples. Belman-Flores et al. (2015) were able to achieve 

under 1% mean percent error (MPE) for mass flow, power and discharge temperature relative to the experimental 

data. In comparison, the physics-based model had mass flow, power and discharge temperature MPE of 7%, 7.5% and 

0.18% respectively. While the author used 80% of the total data for training the model, which is a cause for concern 

of overfitting the data, the number of hidden layers was optimized to prevent overfitting. 

 

Hjortland and Crawford (2024) performed a study of their own semi-empirical model with a massive dataset of 26 

refrigerant/compressor combinations. This was compared directly to the 10-coefficient model which performed better 

than the proposed model when all data was used to obtain the model for predicting mass flow and power. However, 

when fewer training points were used, the 10-coefficient model performed worse. For discharge temperature, the 

proposed model proved to be superior regardless of the number of training samples. The model is elegant in its 

simplicity, using only 2-4 fitted coefficients for each of the predicted values, but maintaining fidelity due to its use of 

physical quantities like density, pressure, and temperature.  
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Table 1: Non-Vapor Injection Literature 

Author Refrigerant / 

Compressor 

Model Type Details Error 

Belman-

Flores et al., 

2015 

R1234yf, R134A / 

Reciprocating 

Physics and 

Empirical 

-ANN 

-Dataset for each 

refrigerant* 

0.8% MFR MPE 

0.8% Power MPE 

0.08% Discharge MPE 

Byrne et al., 

2014 
R407C / Scroll 

Semi-

empirical 

-Modified for R290, 

R1270 and R600A 

10% MFR MaxPE 

10% Power MaxPE 

5K Discharge MaxAE 

Cuevas and 

Lebrun, 2009 
R134A / Scroll 

Semi-

empirical 
-Variable speed 

3 g/s MFR MaxAE 

-24 W power MaxAE 

-0.5K Discharge MaxAE 

Dabiri and 

Rice, 1981 
R22 / Reciprocating Empirical 

-Accounting for Suction 

SH 

-4 datasets* 

4.9% MFR MPE 

5.3% Power  MPE 

 

Guo et al., 

2017 
R410A / Scroll Empirical -Variable speed 20% Power MaxPE 

Hjortland 

and 

Crawford, 

2024 

Variable refrigerants / 

Mostly Scroll 

Semi-

empirical 

-Use 14 data points vs all 

available 

-26 datasets* 

1.3% MFR MAPE 

1.4% Power MAPE 

3.5 K Discharge MAE 

Jahnig et al., 

2000 

R134A or R12 / 

Reciprocating 

 

Semi-

empirical 

-Consider effect of 

ambient temp 

-21 datasets* 

2.9% MFR MaxPE 

1.9% Power MaxPE 

Lee et al., 

2021 

R32, D2Y-60, L-41A / 

Scroll 
Empirical -Factor in SH 

0.9% MFR MPE 

0.3% Power MPE 

Lee et al., 

2022 
R410A / Rolling Piston 

Semi-

empirical 
-2-point prediction 10% MFR MaxPE 

Lee and 

Lam, 2013 

R22, R134A, R407A, 

R410A / Scroll 

Semi-

empirical 
 

1.5% MFR MPE 

8.9% Power MPE 

Li, 2012 

R12, R134A, R22, 

R410A / 

Scroll or Reciprocating 

Semi-

empirical 

-5% MFR 

-8% power 

-8 datasets* 

-Max relative extrapolate 

3.2% MFR MaxPE 

1.9% Power MaxPE 

2.7K Discharge MaxAE 

Ma et al., 

2020 

R410A / Scroll, 

Reciprocating, 

Rolling piston 

Empirical 
-ANN 

-3 datasets* 

1.9% MFR MAPE 

2.2% Power MAPE 

Mackensen 

et al., 2002 

R134A, R22, R717, 

R22 / Scroll, Recip., 

Screw, Rotary 

Semi-

empirical 
-25 datasets* 

1.8% MFR MAMWE 

6.8% power MAMWE 

 

Marchante-

Avellaneda 

et al., 2023 

R134A, R32, R410A, 

R404A / Scroll 
Empirical 

-Correlation 3 best for 

MFR 

-Correlation 2 best for 

power 

-10 datasets* 

1.3% MFR MaxPE 

1.9% power MaxPE 

 

Navarro-

Peris et al., 

2013 

R290, R407C / 

Scroll, Reciprocating 

Semi-

empirical 

-Scroll model performed 

worse 

-4 datasets* 

<5% MFR and power 

MaxPE 

 

Ossorio and 

Navarro-

Peris, 2023 

R290, R410A, R134A 

/ Scroll 

Semi-

empirical 

-Variable speed 

-3 datasets* 
8.7% Power loss MaxPE 

Winandy et 

al., 2002 
R22 / Scroll Physics  

3.5% MFR MaxPE 

3% Power MaxPE 

5K Discharge MaxAE 

*Absolute average taken for errors across datasets where multiple are available 
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Jahnig et al. (2000) also compares a proposed 5-parameter semi-empirical model against the 10-coefficient model 

with 21 combined datasets. Surface level inspection shows the 10-coefficient model outperforms the proposed model, 

but deeper analysis reveals this is due to the lack of datapoints available to perform an error analysis. On the flip side, 

the new model stayed relatively consistent with its errors regardless of the number of available data points. Marchante-

Avellaneda et al. (2023) assessed the compromise between experimental cost and accuracy, therefore, looking at the 

accuracy per available sample might also provide valuable insight into the value per cost of a model as a standardized 

metric or the training sample normalized model accuracy (TSNMA). Accounting for the number of samples has a 

real-world impact on the resources spent to obtain a model. To do this, we can assume the minimum required samples 

for each model; 10 for 10-coefficient model and 4 for the 5-parameter model (mass flow and power model have 2 and 

3 parameters respectively)). Therefore, the average model accuracy per sample of training data for mass flow and 

power are 9.6 %/sample and 9.9 %/sample, respectively for the AHRI model. Conversely, for the 5-parameter model, 

the accuracy per sample of training data for mass flow and power are 24.2 %/sample and 24.5% %/sample, 

respectively. The higher the number, the better, which indicates more accuracy value per sample trained. Here, it 

shows the proposed model can give you better accuracy with fewer trained samples.  

 

Jahnig et al. (2000) also plots the curve fit of the AHRI model which clearly shows why it is bad at extrapolating 

performance. The nature of the polynomial causes it to skew wildly outside the fitted data which simply does not make 

physical sense. The author also tests the model with data that contained different ambient temperatures. They expected 

slightly lower MFR due to lower suction densities and little change to power due to lower MFR being offset by higher 

work increase. Results show little change to MFR with respect to ambient temperature and large underpredicted errors 

in power with respect to ambient temperature. Li (2012) was able to show extrapolation capabilities with their semi-

empirical model, which showed comparable errors to the fitted data. Li (2012) also tested their model at different 

ambient temperatures using data provided by Jahnig et al. (2000) and found similar MFR and power. 

 

Lee et al. (2021) tests their empirical model at various ambient temperatures. In their approach, results at lower 

ambient temperatures underpredicted power and MFR by as much as 11% and 62.5%, respectively for the original 

AHRI model. This improved to 0.7% and 0.4% for power and mass flow respectively with the new corrected map. 

Lee et al. (2021) explains the cause is because of the higher pressure ratios, which in turn, cause lower volumetric 

efficiencies. Lower volumetric efficiencies with respect to ambient temperature may explain the underprediction of 

power in the Jahnig et al. (2000) and Li (2012) model.  

 

Ossorio and Navarro-Peris (2023) and Cuevas and Lebrun (2009) comment on the effect of variable frequency on the 

compressor model. Compressor efficiency is diminished at low frequencies, which is explained by the lack of 

lubrication that leads to leakages. Guo et al. (2017) also performs a correlation analysis showing high correlation 

between compressor frequency and power.  

 

Review of literature here has shown that the AHRI model has significant limitations that can be improved upon. If an 

empirical model is to be used, it could be improved over the AHRI model with less terms using pressure domain. 

Additionally, many semi-empirical models were developed and showed these models can be better than the AHRI 

model with less training samples and/or improved ability to extrapolate or apply to different refrigerants. A new metric 

is also proposed to compare accuracy per training sample for the Jahnig et al. (2000) model. 

 

4. VI MAPS 

 

Although VI compressors have been utilized in refrigeration systems for many years now, their adoption into consumer 

and commercial heat pump products is relatively recent. As such, the capabilities of the conventional 10-coefficient 

model have not met the greater demands for a compressor model that can accurately predict VI performance to support 

present engineering design work. A summary of relevant studies is listed in Table 2 with highlights noted below. 

While the lessons learned from non-VI modeling assessments can be applied and expanded for VI technology, VI 

introduces significantly more complexity that must be considered.  

 

Winandy and Lebrun (2002) developed a model that works for both vapor and liquid injection. This physics-based 

model accounts for the heat added and taken away from the refrigerant entering and exiting the compressor from the 

heat generated by the compressor itself and the ambient, signified by the “fictitious thermal wall”. Among the physics 
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models in this review, this model has proven to predict mass flow, power and discharge temperature fairly accurately, 

only second to the model from Wang et al. (2008), which has a more complicated set of equations and accounts for 

refrigerant leakage. Direct comparison should be taken with the understanding that a different set of data is being used 

for these models, despite having the same refrigerant and compressor type.  

 

Cambio (2016) proposed a fully empirical 23-coefficient model but found that only 5-11 factors were statistically 

significant, which is supported by the Marchante-Avellaneda et al. (2023) model in which less is more. 

 

Tello-Oquendo et al. (2017) modified the AHRI model by adding an extra term to consider injection pressure and 

introduced a simple injected mass flow correlation to intermediate pressure which is inspired by Navarro et al. (2013). 

With this simple modification, they found maximum percent errors (MaxPE) of 4.4%, 1.8% and 2.9% for power, 

suction MFR and injection MFR, respectively. Then in 2019, Tello-Oquendo et al. (2019) developed a semi-empirical 

model for VI compressors, utilizing the same injected mass flow correlation to intermediate pressure and accounting 

for compressor speed. The model includes 6 fitted coefficients and physical properties such as heat coefficient from 

ambient temperature, leak area inside the compressor, volume ratio and electric efficiency which are design parameters 

determined by superheat, pressure, volumetric efficiencies etc. Results show improved or comparable prediction 

accuracies over physics-based models. However, compared to their 2017 empirical model, the 2019 semi-empirical 

model did not improve and performed relatively the same. A limited study was also performed on the effect of injection 

superheat on the model. The study showed the maximum deviations for the injection MFR, compressor power and 

discharge temperature were 3%, 3% and 2K respectively, which is promising, but more samples are desired to further 

prove and verify the model. Additionally, even though the model accounts for variable speed, it is not clear whether 

variable speed was tested. 

 

The compressor model from Christ et al. (2022) takes inspiration from the models of Winandy and Lebrun (2002) and 

Tello-Oquendo et al. (2019) to combine the two-step adiabatic process and the pressure ratio relation to injection mass 

flow. This model provides an “optional” injector which suggests this model application for VI and non-VI 

compressors. Data from Christ et al. (2022) points out the injection mass flow relation to pressure ratio presented by 

Tello-Oquendo et al. (2019) only applies at constant compressor speeds. This is supported by Hjortland and Crawford 

(2023) but conflicts with Sjoholm et al. (2022). Christ et al. (2022) also show results as efficiencies or normalized 

values which are analogous to the MFR, power and discharge temperature. Maximum relative error is high for the 

power consumption, which may be problematic for confirming absolute values, but this model was able to demonstrate 

extrapolation of data with a relatively small increase in maximum error for the MFR and discharge temperature. 

Although the metrics are not identical and therefore, a direct comparison cannot be made, if the Christ model is 

compared to the Winandy and Lebrun model, the semi-empirical model may be better in terms of MFR but worse in 

terms of power. Results are not shown for the injection flow rate. A key concern with this model is the use of physical 

compressor specifications (e.g. efficiencies, losses) that would not commonly be shared by a compressor 

manufacturer; this contrasts the AHRI model whose coefficients reveal no physical information about the product.  

 

Ziviani et al. (2017) proposed an ANN model which was compared to the Lumpkin et al. (2017) Buckingham PI semi-

empirical model. Results for the ANN model shows suction mass flow, injected mass flow, power, and discharge 

temperature MAPEs (maximum absolute percent error) of 1.2%, 2.6%, 0.5% and 0.2%, respectively. For the semi-

empirical model, the results are 1.8%, 13.8%, 0.5% and 0.3%, respectively. The proposed model essentially performs 

the same in power and discharge temperature, performs slightly better in terms of suction mass flow and performs 

significantly better in injection mass flow. The same comparison is done for two-phase injection, a configuration 

rarely explored in the research and shows that, for such a case, the ANN model cannot accurately predict injection 

mass flow or power. Zendehboudi et al. (2017) also incorporates ANN and Adaptive Neuro Fuzzy Inference System 

(ANFIS) to model a variable speed scroll compressor with VI. Comparing the two models, the ANFIS model performs 

the same or better than the ANN model, especially with the injection flow rate prediction. They also show the mean 

square error of the model with varying hidden layers, which shows that for six inputs and five outputs, nine hidden 

layers gives the lowest mean square error. Although the results are promising, one point of criticism that should be 

addressed is the fact that more than double the amount of the validation data was used to train the model. 

 

Feng et al. (2009) explores a physics-based model of a scroll compressor using liquid injection and reports decent 

uncertainty in predicting power and discharge temperature. However, at evaporating temperatures below -30°C, the 

accuracy of the model “cannot be guaranteed.” The two-point prediction method from Lee et al. (2022) may help with 

this issue as it would divide the model into two operating regions to predict the parameters.  
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Table 2: Vapor Injection Literature 

Author Injection 

Type 

Refrigerant / 

Compressor 

Model 

Type 

Details % Error 

Christ et al., 

2022 
Vapor R410A / Scroll 

Semi-

empirical 

-Variable 

speed 

3.3% Volumetric efficiency MaxPE 

7.5% Compressor efficiency MaxPE 

1.8% Discharge efficiency MaxPE 

Dardenne et 

al., 2015 
Vapor 

R410A / Scroll 

 

Semi-

empirical 

-Variable 

speed 

6.75% Suction MFR MaxPE 

7.75% Inj MFR MaxPE 

7.46% Power MaxPE 

9.13K Discharge MaxAE 

Dechesne et 

al., 2015 
Vapor Scroll Empirical 

-Variable 

speed 

99.9% Suction MFR R2 

94.3% Inj MFR R2 

98.4/95.6% Power R2 

Feng et al., 

2009 
Liquid R22 / Scroll Physics  

7% Power MaxPE 

9K Discharge MaxAE 

Hjortland  et 

al., 2023 
Vapor 

R410A, 

R407C / Scroll 

Semi-

empirical 

-4 

datasets* 

1.9% Suction MFR MAPE 

6.1% Inj MFR MAPE 

1.9% Power MAPE 

3.7K Discharge MaxAE 

Kim et al., 

2017 
Vapor R410A / Scroll Physics 

-Variable 

speed 

3% Suction MFR MaxPE 

7% Inj MFR MaxPE 

5% Power MaxPE 

3K Discharge MaxAE 

Lumpkin et 

al., 2017 
Vapor R407C / Scroll 

Semi-

empirical 

-Variable 

speed 

1% Volumetric efficiency MaxPE 

2% Isentropic efficiency MaxPE 

Ning et al., 

2023 

Vapor 

2-phase 

R410A / 

Rotary 
Physics 

-Variable 

speed 

5% Power MaxPE 

5K Discharge MaxAE 

Park et al., 

2002 
Vapor R22 / Scroll Physics 

-Variable 

speed 

7.5% Power MaxPE 

10% Discharge MaxPE 

Tello-

Oquendo et 

al.,2019 

Vapor R407C / Scroll 
Semi-

empirical 

-Variable 

speed 

term 

1.95% Suction MFR MaxPE 

3.97% Inj MFR MaxPE 

4.47% Power MaxPE 

3.24K Discharge MaxAE 

Tello-

Oquendo et 

al. 2017 

Vapor R407C / Scroll Empirical  

1.8% Suction MFR MaxPE 

2.91% Inj MFR MaxPE 

4.4% Power MaxPE  

3.13% Inj Pressure MaxPE 

Wang et al., 

2008 
Vapor R22 / Scroll Physics  

3% MFR MaxPE 

4% Inj MFR MaxPE 

4% Power MaxPE 

2% Discharge MaxPE 

Winandy and 

Lebrun, 2002 

Vapor 

Liquid 
R22 / Scroll Physics  

4.5% Suction MFR (13.5% w/ Liquid 

Inj) MaxPE 

4.5% Power MaxPE 

5K Discharge MaxAE 

Zendehboudi 

et al., 2017 
Vapor R410A / Scroll Empirical 

-ANN 

-AFNSI 

-Variable 

speed 

ANN vs AFNSI 

2.2% vs 2.3% MFR MaxPE 

12.7% vs 4.1% Inj MFR MaxPE 

2.4% vs 1.7% Power MaxPE 

2.5% vs 2% Discharge MaxPE 

Ziviani et al., 

2018 

Vapor 

2-phase 
R407C / Scroll Empirical -ANN 

1.2% Suction MFR MAPE 

2.6% Inj MFR MAPE 

0.5% Power MAPE 

0.2% Discharge MAPE 

*Absolute average taken for errors across datasets where multiple are available 



 

 1142, Page 8 
 

27th International Compressor Engineering Conference at Purdue, July 15 – 18, 2024 

The landscape of VI maps shows an even interest in the three types of models. There are gaps in the literature space 

where more liquid and two-phase injection testing is needed as well as modeling for those injection types. Tello-

Oquendo et al. (2017, 2019) points out the relation between pressure ratio and injection MFR but two out of three 

identified sources state this is also dependent on frequency. Models are just starting to be applied to other types of 

injection such as liquid injection with the model from Winandy and Lebrun (2002) but this is physics-based. One of 

the best results that modeled injection flow rate well was the Ziviani et al. (2017) ANN model but took 80% of the 

available data to train the model. In this regard, the Tello-Oquendo et al. (2019) semi-empirical model may be the best 

model thus far in terms of accuracy to required training points. In any case, either injection flow rate or power has the 

highest uncertainty and it may be worth making direct comparisons with these models. 

 

5. CONCLUSIONS 
 

There is a growing need for improved VI compressor models for the design of heat pump systems. There are a number 

of documented compressor models in the research, both with and without VI. The quantity and sampling approach of 

measurements are important and testing burden can vary significantly depending on the model being fitted. While the 

AHRI 540 10-coefficient model has been very successful as a tool to communicate compressor performance 

information and make predictions in simulation/design tools, the current approach cannot reasonably be extended to 

include additional variables that are increasingly important: vapor injection pressure, frequency, superheat, and 

ambient temperature. Several publications have produced improved models that incorporate some of these 

independent variables, but insufficient data has been shown to demonstrate successful predictions across a wide range 

of all these varying parameters.   

 

It is also important to consider that compressor models are most often used in the context of a system simulation 

software that iteratively solves the compressor along with an assortment of other components that comprise a vapor 

compression cycle. As such, a fast, smooth, continuous, predictable behavior is essential for integration into these 

tools. An area for concern with machine learning models is the potential for disjointed and nonlinear behaviors without 

physical basis that could prevent a system solver from achieving convergence. An increasing interest in transient 

modeling means that dynamic models of VI compressors must be developed alongside steady state ones. Furthermore, 

models that utilize physical parameters like displacement volume, volume ratio, efficiency, and loss terms will likely 

fail to gain traction due to manufacturer resistance to disclose proprietary details. Semi-empirical models like those 

of Tello-Oquendo, Cambio, and Hjortland and Crawford achieve high levels of predictive power while using 

coefficients that do not directly betray proprietary physical specifications. These approaches provide a solid 

foundation that can be expanded on to include dependence on all six relevant variables highlighted here.  

 

A review of the literature also reveals gaps in testing and modeling of liquid and two-phase injection. It would be 

prudent to develop models that can be extended to any injection state. Planned future work includes fabrication of a 

test facility with a calorimeter and an in-depth test suite of a sampling of multiple VI compressors including changes 

in compressor frequency, injection pressure, superheat and ambient temperature. Comparisons will be made between 

various sampling methods, existing modeling methods and new approaches proposed by the authors.  

 

NOMENCLATURE 
 

HVAC  Heating, Ventilation, Air Conditioning   (-) 

COP  Coefficient of Performance    (-) 

VI  Vapor Injection      (-) 

AHRI  Air-conditioning, Heating, and Refrigeration Institute  (-) 

DOE  Design of Experiments     (-) 

LHS  Latin Hypercube Spacing     (-) 

PDOE   Polynomial Design of Experiments    (-) 

SP-DOE  Scaling Polytope Design of Experiments   (-) 

MaxPE  Maximum Percent Error     (-) 

MaxAE  Maximum Absolute Error     (-) 

MPE  Mean Percent Error     (-) 

MAE  Mean Absolute Error     (-) 

MAPE  Mean Absolute Percent Error    (-) 
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MAMWE Maximum Average Mean Weighted Error   (-) 

R2  Coefficient of Determination    (-) 

ANN  Artificial Neural Network     (-) 

ANFIS  Adaptive Neuro Fuzzy Inference System   (-) 

OEM  Original Equipment Manufacturer    (-) 

TSNMA  Training Sample Normalized Model Accuracy  (-) 

MFR  Mass Flow Rate      (-) 
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