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ABSTRACT 
 

A thermal compressor uses thermal energy to increase the pressure of the working gas, while maintaining a 

temperature difference, as an essential factor for its effective functioning. BoostHEAT's innovative thermal 

compressor, driven by eco-friendly thermal energy, not only targets the replacement of traditional compressors in 

various CO2 applications, but also aligns with the critical environmental motive to address global warming. The 

design of the targeted thermal compressor is inspired by the gamma type Stirling engine, replacing the power piston 

with inlet and outlet valves. In this paper, the thermal compressor (treated as a black box) is implemented in a heat 

pump cycle, on which the tests were conducted. In the context of thermodynamic analysis, six principal inputs are 

imposed to the compressor, and five outputs are measured. These physical variables are crucial in characterizing the 

compressor, and evaluating its perfromance. An empirical model is developed where each output is represented as a 

function of these inputs in a general mathematical form. The objective is to fine-tune these functions using machine 

learning regression methods, based on the collected data. A sensitivity analysis is carried on each output with respect 

to the inputs, in order to investigate the correlations between them and find the relevant inputs for each selected 

output. 

 

1. INTRODUCTION 

 
Heating systems are major contributors to the overall energy consumption and greenhouse gases. So, reducing these 

two factors would necessarily need more environmentally friendly heating systems. Among them are the heat-driven 

heat pump cycles, where heating methods are combined with heat pump cycles. Some examples include non-

integrated systems that involve the coupling of a Stirling engine with a traditional electric compressor, and 

integrated ones such as the Vuilleumier machines introduced by Bush (1939) patent, that operates on the principles 

of a Stirling engine, absorbing heat to produce cooling and heating through compression and expansion processes. 

An application is a Stirling type thermal compressor introduced by Ibsaine et al. (2016), which is a thermally driven 

compressor that aim to replace a traditional compressor in a heat pump cycle. Another environmental advantage of 

this technology was the use of CO2 as the refrigerant, which have a relatively low global warming potential and 0 

ozone depletion, along with its non-toxic and non-flammable characteristics.  

A thermal compressor is a gamma type Stirling engine having the power piston replaced with inlet and outlet valves. 

Therefore, the main components are two working spaces (compression (C) and expansion (E)) that are connected 

with heat exchangers, heater (H), cooler (K) and regenerator (R). The heat is received through the heater and 

rejected through the cooler. Both heat exchangers are separated with a porous medium regenerator that acts as a 

thermal capacitor to ensure a temperature difference between lower and upper parts. A displacer separating the two 
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working spaces is coupled to an electric motor with a crank mechanism and used to transport the fluid inside the 

thermal compressor between lower cold and top hot parts. In few words, a thermal compression process can be 

divided into 4 phases that are illustrated in Figure 1 showing the variation of the CO2 pressure as a function of the 

displacer displacement. From phase 1 to 2, the displacer descent pushes the CO2 to the cylinder upper hot section. 

As a result of the elevated temperatures, the fluid pressure starts to rise incrementally. Upon reaching sufficient 

pressure, the exhaust valve activates, and CO2 is held at a steady pressure from phases 2 to 3, with no pressure loss 

from valve flow assumed. At phase 3, the displacer shifts its movement direction, moving the CO2 back to the cooler 

lower section, which leads to a steady pressure decline. As the pressure drops to a sufficient level by phase 4, the 

inlet valve opens, allowing the CO2 to revert to its original state at phase 1.  

Most of the attempts to model a thermal compressor were based on physical equations. To the authors’ best 

knowledge, no statistical based model was derived for a Stirling type thermal compressor. Although such model 

would lack important physical aspects inside, it provides a fast and reliable performance predictions based on real 

experimental data. The collected data is from 3 separate setups of almost similar test bench layout, which is 

introduced in the second section. The third section introduces the machine learning (ML) models that are to be used 

to predict the compressor performance. In section four, a sensitivity analysis is introduced to sort the order of 

effectiveness of the independent variables on each dependent variable, to find the relevant inputs for each. The data 

is then fitted into 3 types of ML models, where a comparison of their accuracy is shown in parity plots with the 

Mean Absolute Prediction Error (MAPE) and the 𝑅2 of each. 

 

 
 

Figure 1: Thermal compression process described by the variation of pressure inside as a function of the 

position 𝑿 of the displacer. 

 

2. Experimental Setup 

 

 

(a) 

 

(b) 
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Figure 2: (a) Test Bench layout with (b) the pH diagram of CO2 in the cycle. 

 

 

The thermal compressor was installed in a basic heat pump cycle shown in figure 2 (a). It consists of a compressor 

(CP), a condenser (COND), an electronic expansion valve (EEV), and an evaporator (EVAP). The EEV is manually 

adjusted to regulate the inlet and outlet pressures pin and pout. The CO2 in the cycle remains in its subcritical state, 

as seen in the p-h diagram figure 2 (b).  

 The thermal compressor is accompanied with a heat combustion process on the top, where part of the heat is 

absorbed (𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔), and the rest is recovered by a recovery heat exchanger (RHX) in the form of waste heat. An 

electric motor (M) with power (𝑃𝑚𝑜𝑡𝑜𝑟) is connected to the displacer to ensure its movement, but with a relatively 

low power compared to the combustion power. Part of the resulting power is recovered by the cooling water 

(𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔) that circulates around K in a water jacket, and the rest is released to the thermal cycle as an output 

enthalpy flow ( 𝑇𝑜𝑢𝑡  and ṁ ). The overall ranges of the independent variables (inputs) in the three different 

experiments are: 

 

• 𝑝𝑖𝑛: inlet pressure ∈ [23, 48.7] bar. 

• 𝑝𝑜𝑢𝑡: outlet pressure ∈ [34.4, 64.2] bar. 
• 𝜔: motor rotation speed ∈  [60, 260] rpm. 

• 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 : heater temperature ∈ [300, 800] °C. 
• 𝑇𝑤: cooling water temperature ∈ [17.5, 41.8] °C. 
• 𝑇𝑖𝑛: evaporation temperature or temperature of CO2 entering the compressor ∈ [1.6, 26.8] °C. 

  

While the resulting outputs (dependent variables) ranges are: 

 

• 𝑚̇: mass flow rate of CO2 ∈ [3.6, 46] g/s. 

• 𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔: Heating power absorbed by the compressor ∈ [461, 3774]𝑊. 

• 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔: Cooling power or heat rejected to the cooling water ∈ [441, 2581]𝑊. 

• 𝑃𝑚𝑜𝑡𝑜𝑟: Electric power provided to the motor ∈ [−38, 302]𝑊. 

• 𝑇𝑜𝑢𝑡: Outlet temperature ∈ [37, 83]°𝐶. 

 

2.1 Performance curves 

 
Based on the collected data, we show the performance of the tested thermal compressor. Mass flow rate and heating 

power, being the two main performance indicators of a thermal compressor are plotted as a function of pressure ratio 

𝑃𝑟 =
𝑝𝑜𝑢𝑡

𝑝𝑖𝑛
, temperature ratio 𝑇𝑟 =

𝑇ℎ𝑒𝑎𝑡𝑒𝑟 [𝐾]

𝑇𝑤 [𝐾]
, and motor speed 𝜔: 
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Figure 3: 3D plots showing the variation of 𝒎̇ and 𝑷𝒉𝒆𝒂𝒕𝒊𝒏𝒈 as a function of 𝑷𝒓, 𝑻𝒓, 𝒂𝒏𝒅 𝝎. 

 

 
 

Figure 4: 2D plots showing the variation of (a) 𝒎̇ and (b) 𝑷𝒉𝒆𝒂𝒕𝒊𝒏𝒈 as a function of 𝑻𝒓 𝒂𝒏𝒅 𝝎, at 𝑷𝒓 = 𝟏. 𝟑.  

 

Figure 4 (b) shows a linear variation of the heating power curves, while such curves are of parabolic shapes for what 

concerns the mass flow rate. Therefore, the same mass flow rates can be obtained at various heating power values. 

An optimal line is drawn on figure 4 (a) depicting the optimal (𝜔, 𝑇𝑟) values that provide highest mass flow rate 

values at minimum heat power values for 𝑃𝑟 = 1.3. 

   

3. ML models 

 
3.1 Regression Models 

 

Regression models are fundamental tools in statistics and machine learning for understanding the relationship 

between a dependent variable and one or more independent variables as developed in James al. (2013) book. The 

goal of regression analysis is to model the expected value of the dependent variable based on the values of the 

independent variables. Yazar et al. (2017) have compared various regression models that were developed to predict 

the parameters of a compressor and a turbine. Among these models, a linear Regression (LR) is the simplest form of 

regression that assumes a linear relationship between the dependent variable and independent variables. Let 𝑦𝑝 =

[𝑦1 , 𝑦2, … , 𝑦𝑛] be the predicted output vector, with 𝑛 as the number of observations. Each predicted output of a 

single observation can be described in the form: 
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 𝑦𝑘  =  𝛽0  + ∑ 𝛽𝑖𝑥𝑘𝑖

𝑙

𝑖=1

 

 

Where 𝑦𝑘  is the predicted value for the 𝑘-th observation, 𝑥𝑘𝑖  are the input features, 𝛽0 is the intercept of the model, 

𝛽𝑖 are the coefficients of the inputs 𝑥𝑘𝑖 ,  and 𝑙 is the number of inputs which in our case is equal to six. The optimal 

model coefficient (𝛽) is determined by solving the ordinary least squares (OLS) minimization problem, which aims 

to minimize the squared differences between the predicted values 𝑦𝑝 and the actual data values 𝑦𝑟. The OLS 

objective function can be expressed as: 

min
𝛽

∑(𝑦𝑝 − 𝑦𝑟)
2
 

 

The LR and polynomial regression (PR) models are derived using ‘Sklearn’ or scikit-learn library in python, which 

comes with several built-in ML algorithms. 80 % of the data is used to train the model, while the rest is used for 

validating it.  

 

3.2 ANN Model 

 
Artificial Neural Networks (ANNs) are a cornerstone of machine learning, inspired by the structure and functional 

aspects of biological neural networks as described in the book of Haykin (2009). An ANN is composed of 

interconnected processing elements, known as neurons which are organized into layers (input, hidden, and output) to 

process data. Each neuron performs a linear regression—applying weights 𝑤𝑖 , summing inputs 𝑥𝑖, and potentially 

using an activation function 𝑓 to introduce non-linearity—before passing the result to subsequent neurons. 𝑏𝑘 is a 

bias parameter that helps adjust the output of a neuron independently of its inputs. An output of a 𝑘 − 𝑡ℎ neuron is 

expressed as follows: 

 

𝑦𝑘 = 𝑓 (∑ 𝑤𝑘𝑖𝑥𝑘𝑖

𝑙

𝑖=1

+ 𝑏𝑘) 

 

In the context of regression, the model aims to predict continuous outcomes by adjusting the weights between 

neurons to minimize prediction error, through a process of training and optimization. This structured approach 

allows neural networks to capture complex patterns within the data, facilitating accurate predictions on new, unseen 

datasets, and making them particularly suitable for sophisticated regression tasks in a wide array of research and 

application fields. 

 

 
 

Figure 5: Structure of k-th neuron of ANN model. 

 

Ziviani et al. (2018) have developed an ANN model for a scroll expander and an injected scroll compressor type, 

achieving a higher accuracy than a semi-empirical model, as an ANN model needs no assumptions and can be 
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directly trained with experimental data. In this sense, we develop an ANN model for the tested thermal compressor. 

The model of each output variable consists of an input and a hidden layer of a maximum of 300 neurons and an 

output layer of 1 neuron. Rectifier linear unit (ReLU) is applied on all the layers, ‘Adamax’ is chosen as the learning 

algorithm, and ‘Mean squared error’ as the error function with 0.2 as validation set. To increase the nonlinearity and 

the accuracy of the ANN model, more hidden layers and neurons can be added, but at a higher risk of overfitting. 

The derivation of the ANN model was done using Keras introduced by Chollet (2015), which is a high-level neural 

network application program interface, written in python and directly integrated in TensorFlow.  

A common indicator of the fit quality of a regression model is the 𝑅2 metric, which quantifies how close is the data 

to the regression model predictions by the following ratio: 

 

𝑅2 = 100%
𝑐𝑜𝑣(𝑦𝑟 , 𝑦𝑝)

√𝑐𝑜𝑣(𝑦𝑟 , 𝑦𝑟). 𝑐𝑜𝑣(𝑦𝑝, 𝑦𝑝)
 

 

A close value to 100% 𝑅2 indicates a perfect fit, which would indicate that the model is overfitted. To make sure the 

predictions are not biased, a second indicator is introduced referred to as the mean absolute percentage error 

(MAPE). Which can be represented by the following equation: 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
 ∑ |

𝑦𝑝 − 𝑦𝑟

𝑦𝑟

| 

 

A 0 % MAPE indicates a perfect fit. Before comparing the models’ accuracies, a sensitivity analysis is carried out to 

evaluate the impact of the input variables on each respective output variable. To guarantee a scale uniformity of the 

inputs, the training and the testing data are normalized between (0.1, 0.9) by applying: 

 

𝑥𝑛𝑜𝑟𝑚 = 0.8
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

+ 0.1  

 

Where 𝑥𝑚𝑖𝑛   and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of the defined vector 𝑥, and 𝑥𝑛𝑜𝑟𝑚 is the resulting 

normalized vector.  

 

4. Results and Discussions 

 
4.1 Sensitivity Analysis 

 
In this section, we analyze the sensitivity of each output with respect to the 6 inputs defined previously.  The data is 

first fitted into a Gaussian process model, and the automatic relevance determination (ARD) is chosen as its Kernel. 

As indicated by Quoilin and Schrouff (2016), this Kernel allows the determination of the length scale of the inputs, 

where the highest value represents the least relevant input for the selected output. To increase the effectiveness of 

this method, a cross validation of 10 folds is applied on each Gaussian model, and the length scale for each is then 

determined as the average of all cross-validations. The resulting length scale of each output are as follows: 

 

Table 1: length scale values of the inputs corresponding to each output. 

 

 𝑝𝑖𝑛 𝑝𝑜𝑢𝑡 𝜔 𝑇ℎ𝑒𝑎𝑡𝑒𝑟  𝑇𝑤 𝑇𝑖𝑛 

𝑚̇ 0.5 0.37 0.62 0.6 0.48 20.35 
𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔 0.51 0.65 0.93 0.18 0.77 0.98 

𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 0.55 0.2 0.3 0.83 1.2 0.6 

𝑃𝑚𝑜𝑡𝑜𝑟 0.44 0.33 0.35 0.27 1.14 4.9 
𝑇𝑜𝑢𝑡 0.35 0.55 1.13 0.35 1.15 0.7 

 
Higher length scale values are seen in 𝑇𝑤 and 𝑇𝑖𝑛. To further verify the inputs impacts on the outputs, each of the 

outputs is obtained with different sets of inputs by fitting them in PR models and comparing the MAPE and 𝑅2 

values for each. As seen in the figures below, the highest variation of MAPE and 𝑅2 on all outputs except 𝑇𝑜𝑢𝑡  is 
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caused by the addition of 𝜔 as one of the inputs, which shows that 𝜔 has the strongest impact. On the other hand, 

𝑇𝑖𝑛  seems to have the least impact on all the outputs. It’s interesting to see that 𝑃𝑚𝑜𝑡𝑜𝑟  can reach a satisfying 

prediction (> 93 % 𝑅2 and < 8 % MAPE) with 𝑝𝑖𝑛 , 𝑝𝑜𝑢𝑡 , 𝑎𝑛𝑑 𝜔 as the inputs, while 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔  and 𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔  would 

need 𝑇ℎ𝑒𝑎𝑡𝑒𝑟  as a fourth input to achieve such accuracy. For  𝑚̇ and 𝑇𝑜𝑢𝑡  at least first five inputs are needed. As a 

result, 𝑇𝑖𝑛  is disregarded in the next section, and the derived models will be dependent on the five first inputs, 

𝑝𝑖𝑛 , 𝑝𝑜𝑢𝑡 , 𝜔, 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 , and 𝑇𝑤. 

 

 

 
 

Figure 6: MAPE and 𝑹𝟐 values of PR models with different sets of inputs. 

 

4.2 Models Accuracies 

 
From 3 different test benches, 251 samples are collected, and used to derive the data-based models. The shown plots 

correspond to 20 % of the 251 points that are used to compare the accuracies of the models. As a result, the ANN 

model showed the highest predictions accuracy, with not much difference from the PR predictions. Even the LR 

predictions are not very distant from the 2 other nonlinear models for 𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔 , 𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 , and 𝑇𝑜𝑢𝑡  outputs. An 

advantage of having a good accuracy for PR models is the ability to represent them in algebraically. 
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Figure 7: Accuracies of LR, PR, and ANN models. 
 

5. Conclusion 

 
A Stirling type CO2 thermal compressor for heat pump applications was introduced. The compressor was tested in a 

heat pump test bench cycle. The collected data included six main inputs and five outputs that are used to plot the 

performance curves of the thermal compressor. A sensitivity analysis is applied to determine the relevant inputs and 

sort the impact of each of the inputs on each output. An artificial neural network (ANN), linear regression (LR) and 

polynomial regression (PR) models are obtained taking the relevant inputs for each output as the independent 

variables. The three methods are then compared, showing a highest accuracy for the ANN model, closely followed 
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by the PR model. Obtaining it can reliably be used in ML tools are reliable to analyze the data, the correlations 

between them, and empirical models to predict the performance, both reliably and fast.  

  

NOMENCLATURE 

 
𝑋 displacement of displacer (m) 

𝑏𝑘 k-th bias (-) 

𝑦𝑝 predicted output vector (-) 

𝑦𝑘  single predicted output (-) 

𝑦𝑟 real value (-) 

𝑥                                   inputs vector                             (-) 

𝑙 number of inputs (-) 

𝑛 number of observations (-) 

𝑝𝑖𝑛  inlet pressure (Pa) 

𝑝𝑜𝑢𝑡  outlet pressure (Pa) 

𝑇ℎ𝑒𝑎𝑡𝑒𝑟  Heater temperature (K) 

𝑇𝑤 Water temperature (K) 

𝜔 motor speed (Rpm) 

𝑚̇ mass flow rate (g/s) 

𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔   heating power   (W) 

𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔    cooling power   (W) 

𝑃𝑚𝑜𝑡𝑜𝑟    motor power   (W) 

𝑇𝑜𝑢𝑡    outlet temperature  (K) 

 

Subscripts 

 
CO2  Carbon dioxide 

ML  machine learning 

𝑚𝑎𝑥                     maximum 

𝑚𝑖𝑛                      minimum 

H  heater 

R  regenerator 

K  cooler 

C  compression 

E  expansion 

 

 

REFERENCES 

 
Bush, V., (1939). "Apparatus for compressing gases," US Patent 2,157,229. 

Chollet, F., (2015). Keras. Github. Retrieved from https://github.com/fchollet/keras. 

Haykin, S., (2009). Neural Networks and Learning Machines (3rd Edition ed.). Pearson Practice Hall. 

Ibsaine, R., Joffroy, J.M., Stouffs, P., (2016). Modelling of a new thermal compressor for supercritical CO2 heat 

pump, Energy, Volume 117, Part 2, p. 530-539. 

James, G., Witten, D., Hastie, T., Tibshirani, R., (2013). An Introduction to Statistical Learning with Applications in 

R, New York: Springer. 

Quoilin S., Schrouff J., Assessing Steady-State, Multivariate Experimental Data Using Gaussian Processes: The 

GPExp Open-Source Library. Energies. 2016; 9(6):423. 

Yazar, I., Yavuz, H.S., Yavuz, A.A., (2017). Comparison of various regression models for predicting compressor 

and turbine performance parameters, Energy, Volume 140, Part 2, Pages 1398-1406. 

Ziviani, D., Ammar M.B., Nelson A.J., Dominique L., James E.B. and Eckhard A.G., (2018). Machine Learning 

Applied to Positive Displacement Compressors and Expanders Performance Mapping. 

 

https://github.com/fchollet/keras

